We report measurements of D ∗± production in interactions between 350 GeV/ c π − particles and nuclei. Reconstruction of the decay D ∗+ → D 0 π + and charge conugate, with D 0 identified via its decays to K − π + and K − π − π + π + , has allowed isolation of a sample of 611 ± 28 D ∗± mesons, produced at positive x F . Assuming a linear A-dependence, the cross-section per nucleon in the region x F > 0 is measured to be 1.41 ± 0.10 ± 0.11 μ b for D ∗+ and 1.84 ± 0.12 ± 0.15 μ b for D ∗− . We present measurements of differential cross-sections with respect to x F and P t 2 , and compare data for D ∗± (vector-meson) production with data for production of charmed pseudoscalar mesons.
No description provided.
Data on D0, DBAR0, D+, and D- meson production are taken from previous publication of this collaboration (see NP B495, 3).
No description provided.
Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
This paper presents the results on charged particle yields and production ratios as measured by the NA56/SPY experiment for 450 GeV/c proton interactions on beryllium targets. The data cover a seconda
Positive particle yield from the 100mm Be target. Data are corrected for the pion or proton flux coming from strange particle decays.
Negative particle yield from the 100mm Be target. Data are corrected for the pion or antiproton flux coming from strange particle decays.
Positive particle yield from the 100mm Be target. Data are NOT corrected for the pion or proton flux coming from strange particle decays.
Strange and multistrange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a Quark-Gluon Plasma takes place. The production yields of Λ s, Λ s, Ξ − s, and Ξ + s relative to the production of negative particles are presented for sulphur-tungsten interactions at 200 GeV/ c per nucleon. These production yields are compared to those produced in proton-tungsten interactions and the enhancements of strange and multistrange baryons and antibaryons are presented.
Hyperon to negative production ratios with sulphur beam.
Hyperon to negative production ratios with proton beam.
Strange and multistrange baryon enhancements.
We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.
2.75 degree spectrometer data.
5.5 degree spectrometer data.
10.5 degree spectrometer data.
No description provided.
No description provided.
No description provided.
Production cross sections of K$^+$ and K$^-$ mesons have been measured in C+C collisions at beam energies per nucleon below and near the nucleon-nucleon threshold. At a given beam energy, the spectral slopes of the K$^-$ mesons are significantly steeper than the ones of the K$^+$ mesons. The excitation functions for K$^+$ and K$^-$ mesons nearly coincide when correcting for the threshold energy. In contrast, the K$^+$ yield exceeds the K$^-$ yield by a factor of about 100 in proton-proton collisions at beam energies near the respective nucleon-nucleon thresholds.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.
Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.
Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.
Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.
We have measured the absolute unpolarized cross sections for photon electro-production off the proton ep → epγ with the Three-Spectrometer-Setup at MAMI at a momentum transfer q=600 MeV/c and a virtual photon polarization ɛ=0.62. The momentum q ′ of the outgoing real photon range from 33 to 111 MeV/c. We extracted two combinations of the recently introduced generalized polarizabilities [1,2].
No description provided.
The three polarization tensor components of the deuteron produced in the H( p , d )π + reaction have been measured for the first time. The experiment was performed using a vertically polarized proton beam produced by the SATURNE accelerator. The deuteron polarization was measured with the POLDER polarimeter. The three polarizing powers t 20 00 , t 21 00 and t 22 00 and the three spin-transfer observables t 20 11 , t 22 11 and t 22 11 have been extracted at a proton kinetic energy of 580 MeV over a wide angular range and at two fixed center-of-mass angles, 132° and 151°, between 800 and 1300 MeV. The six observables, calculated in the C.M. helicity frame, have been compared with predictions of the most refined partial-wave analyses and also with the predictions of a theoretical coupled-channel model which includes the NN-NΔ transition. The comparison between the data and the theory/partial-wave analyses shows some discrepancies which get worse with increasing proton energy. Adding these data to the world database should improve significantly future partial-wave analyses. The A y 0 analyzing power has also been measured over the same kinematical range. The partial-wave analysis predictions are in good agreement with this observable.
No description provided.
No description provided.
No description provided.