A sample of 24 700 Ω− hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω− polarizations are found to be -0.054±0.019 and -0.149±0.055 at mean Ω− momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω− magnetic moment of -(1.94±0.17±0.14)μN
No description provided.
Using the CLEO II detector at the Cornell Electron Storage Ring, we have determined the inclusive B* cross section above the Υ(4S) resonance in the energy range from 10.61 to 10.70 GeV. We also report a new measurement of the energy of the B*→Bγ transition photon of 46.2±0.3±0.8 MeV.
Hadronic cross section above the continuum. The final state is an unknown mixture of B BBAR + B* BBAR + B B*BAR (+ B* B*BAR only at the highest energy).
Inclusive B* cross section.
The\(e^ +e^ -\to K_s^0 K^ \pm\pi ^ \mp\) andK+K−π0 cross sections have been measured in the energy interval\(1350 \leqq \sqrt s\leqq 2400\) with the DM2 detector at DCI. The\(K_s^0 K^ \pm\pi ^ \mp\) cross section shows the contribution of an isoscalar vector meson at ≈1650 MeV/c2 in agreement with a previous experiment. The low statisticsK+K−π0 measurement is consistent with the above result.
The K0S K+- PI-+ cross section.
The K+ K- PI0 cross section.
The production of K 0 mesons in e + e − interactions at center of mass energies in the region of the Z 0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K 0 , Z 0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σ had β) (dσ/d x E ) for K 0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.
No description provided.
No description provided.
K0 multiplicity per hadronic event.
Multiplicity and angular distributions of shower, grey, and black particles produced in the interactions of S32 at 200A GeV, O16 at 200 and 60A GeV, and He4 at ∼140A GeV in emulsion are compared with the predictions of a Monte Carlo code which takes into account the internuclear cascading. The correlations between the various parameters belonging to the same or to the different kinds of particles are discussed. The data on shower and grey particles from all the beams are well described by the code. However, the black prong data show a significant departure from this model.
No description provided.
No description provided.
No description provided.
We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.
Jets are ordered according their energy: E1 > E2 > E3.
An analysis of the forward-backward asymmetry in Z0 decays using data from the Collider Detector at Fermilab at √s =1.8 TeV yields AFB=[5.2±5.9(stat)±0.4(syst)]% and sin2θ¯W =0.228−0.015+0.017(stat)±0.002(syst).
Asymmetry after background and QCD corrections.
SIN2TW derived from asymmetry measurement fully corrected for background and radiative corrections.
None
No description provided.
The ratio of the branching fractions for p p →K + K − and p p →π + π − was determined with the CPLEAR detector, by stopping antiprotons in a gaseous hydrogen target at 15 bar pressure. It was found to be BR(K + K − )/BR( π + π − )=0.205± 0.016. The fraction of P-wave annihilation at rest at this target density was deduced to be (38±9)%.
CONST is the fraction of P-wave annihilation in gaseous hydrogen at pressu re of 15 bar. In the SIG/SIG the statistical and systematic errors are added qu adratically.
The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.
It is assumed that the couplings of various up quarks to be the same.
It is assumed that the couplings of various down type quarks to be the same.