The polarization for the K + n elastic and charge-exchange reactions was measured at the momenta of 1.06, 1.28, 1.39 and 1.49 GeV/ c . It was found to be negative for the K + n elastic process and generally positive for the charge-exchange process. The present results are compared with the predictions of phase shift analyses.
No description provided.
No description provided.
No description provided.
The dissociation of a K− into the K−ϕ system is studied at 8.25 GeV/c. The cross-section for K−ϕp production is (27±2) μb. All the expected properties of diffraction are found (mass spectrum, mass-slope correlation, 1+S wave dominance). There is also an indication of the Kϕ decay mode of a 2− resonance in theL region.
No description provided.
The reaction π − p→ π 0 π 0 n has been measured with a 648 channel hodoscope spectrometer for the detection of the four γ's from the π 0 decays. The π 0 π 0 D-wave is fully compatible with the f 0 contribution as it is determined in high-statistics π + π − experiments. The magnitude of the π 0 π 0 S-wave and the cosinus of its phase angle (relative to the known D-wave) are determined from fits to the π 0 π 0 angular distributions. Argand diagrams for the I = 0 amplitude S 0 are given for the range 1000 to 1500 MeV/ c 2 . Two solutions exist. One exceeds the unitarity limit above 1200 MeV/ c 2 . The other remains within the unitarity limit and is nearly elastic up to 1450 MeV/ c 2 . It indicates an S 0 wave resonance around 1300 MeV/ c 2 .
No description provided.
No description provided.
The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow-band νμ beam. Based on the observation of 830 charged-current νμ interactions, the cross section was found consistent with a linear rise with the neutrino energy in the interval 10 GeV<~Eν≲240 GeV. The average slope was determined to be σνEν=(0.62±0.05)×10−38 cm2 GeV−1.
Measured charged current total cross section.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.
The cross sections for K+p interactions at a center-of-mass energy of 3 GeV (4.3 GeV/c incident momentum) have been determined for the K+pπ+π−, K0pπ+π0, and K0π+π+n final states. The shape of the differential cross section dσdt′ for the quasi-two-body final state K*0(890)+Δ++(1236) is not a single exponential. Characteristics of the low-mass Kππ and pππ enhancements are discussed.
No description provided.
DECAY MOMENTS OF THE K*0 AND DEL++.
In an exposure of the deuterium-filled 15 ft bubble chamber, σ(νμn→νμX)σ(νμp→νμX) is measured to be 1.01±0.14. The ratios of neutral-current to charged-current cross sections are 0.30±0.03, 0.22±0.03, and 0.49±0.06 for D2, n, and p targets, respectively, which imply values uL2=0.19±0.06 and dL2=0.13±0.04 for the neutral-current chiral couplings. Evidence for both u- and d-quark jets in neutral-current reactions is observed in distributions of energy fraction of the fastest hadron of either charge from each event.
No description provided.
No description provided.
No description provided.
From a study of 8-GeV/c π−p interactions, the various two-pion and four-pion decay channels available to the g− meson have been investigated. Our results indicate that the dominant 4π decay modes involve intermediate ρ and ω production without significant A2 formation.
No description provided.
No description provided.
No description provided.
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
Results from a high-statistics experiment involving an exposure of the SLAC 82-in. hydrogen bubble chamber to a beam of 8-GeV/c π− yielding a final state of π−π+π−p are presented. Copious production of ρ, Δ++, and f is found. Considerable quasi-two-body production in which one particle decays to one of the above resonances is also observed. Some double-resonance production involving baryon and meson resonances is also seen. The production properties of ρ, Δ++, and f mesons are well described by a double-Regge model.
TOPOLOGICAL CROSS SECTIONS. FIRST 2 PRONG VALUE CONTAINS ELASTIC. 0PRONG IS TAKEN FROM A SMALLER AND DIFFERENT PARTIAL SAMPLE.
CROSS SECTION CALCULATED VIA THE OPTICAL THEOREM AS A CROSS CHECK.
SPECIFIC CHANNEL CROSS SECTIONS.