We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.
Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.
The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.
From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.
Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.
Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.
Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.
Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV
TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.
VALUE OF ASSYMETRY IN CORRELATIONS.
No description provided.