The first observation of electroweak production of a photon in association with two forward jets in proton-proton collisions is presented. The measurement uses data recorded by the CMS experiment at the LHC during 2016$-$2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis is performed in a region enriched in photon production via vector boson fusion, with a requirement on the transverse momentum of the photon to exceed 200 GeV. The cross section is measured to be 202$^{+36}_{-32}$ fb, at a significance with respect to the null hypothesis that exceeds five standard deviations. This is in agreement with the standard model prediction of 177$^{+13}_{-12}$ fb. Differential cross sections are measured as a function of various observables. Limits are set on dimension-6 effective field theory operators that contribute to the WW$γ$ interaction. The observed 95% confidence intervals for the corresponding Warsaw basis Wilson coefficients $c_\mathrm{W}$ and $c_\mathrm{HWB}$ are [$-$0.11, 0.16] and [$-$1.6, 1.5], respectively.
A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.
A search for flavor violating decays of the Z boson to charged leptons is performed using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Each of the decays Z $\to$ e$μ$, Z $\to$ e$τ$, and Z $\to$$μτ$ is considered. The data are consistent with the backgrounds expected from standard model processes. For the Z $\to$ e$μ$ channel the observed (expected) 95% confidence level upper limit on the branching fraction is 1.9 (2.0) $\times$ 10$^{-7}$, which is the most stringent direct limit to date on this process; the corresponding limits for the Z $\to$ e$τ$ and Z $\to$ $μτ$ channels are 13.8 (11.4) $\times$ 10$^{-6}$ and 12.0 (5.3) $\times$ 10$^{-6}$, respectively. Additionally, the e$μ$ final state is used to search for lepton flavor violating decays of Z' resonances in the mass range from 110 to 500 GeV. No significant excess is observed above the predicted background levels.
A search for long-lived heavy neutral leptons (HNLs) using proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC is presented. Events are selected with a charged lepton originating from the primary vertex associated with the proton-proton interaction, as well as a second charged lepton and a hadronic jet associated with a secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No excess of events above the standard model expectation is observed. Exclusion limits at 95% confidence level are evaluated for HNLs that mix with electron and/or muon neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square mixing parameter values reaching as low as 2 $\times$ 10$^{-7}$. For masses above 11 GeV, the presented limits exceed all previous results in the semileptonic decay channel, and for some of the considered scenarios are the strongest to date.
The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75-9.00 TeV. The results provide the first mass limits on a right-handed boson Z$_{\mathrm{R}}$ decaying to three gluons and on an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.
The observation of WW$\gamma$ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb$^{-1}$ is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WW$\gamma$ is 5.9 $\pm$ 0.8 (stat) $\pm$ 0.8 (syst) $\pm$ 0.7 (modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.
A search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC in 2022. Novel trigger, reconstruction, and machine-learning techniques were developed for and employed in this search. After all selections, the observations are consistent with the background predictions. Limits are presented on the branching fraction of the Higgs boson to long-lived particles that subsequently decay to quark pairs or tau lepton pairs. An improvement by up to a factor of 10 is achieved over previous limits for models with long-lived particle masses smaller than 60 GeV and proper decay lengths smaller than 1 m. The first constraints are placed on the fraternal twin Higgs and folded supersymmetry models, where the lower bounds on the top quark partner mass reach up to 350 GeV for the fraternal twin Higgs model and 250 GeV for the folded supersymmetry model.
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb$^{-1}$. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 fb$^{-1}$. Jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm for distance parameters of $R$ = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity $\lvert y_\text{max}\rvert$ of the two jets with the highest transverse momenta $p_\mathrm{T}$ and their invariant mass $m_{1,2}$, and triple-differentially (3D) as a function of the rapidity separation $y^*$, the total boost $y_\mathrm{b}$, and either $m_{1,2}$ or the average $p_\mathrm{T}$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1179 $\pm$ 0.0019.