ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2024-021, 2024.
Inspire Record 2755168 DOI 10.17182/hepdata.149493

A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.

2 data tables

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.


Measurement of the Muon Charge Asymmetry in Inclusive $pp \to W+X$ Production at $\sqrt s =$ 7 TeV and an Improved Determination of Light Parton Distribution Functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…