Date

Collaboration

Measurement of the $W \to μν_μ$ cross-sections as a function of the muon transverse momentum in $pp$ collisions at 5.02 TeV

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
LHCb-PAPER-2025-031, 2025.
Inspire Record 2972386 DOI 10.17182/hepdata.165429

The $pp \to W^{\pm} (\to μ^{\pm} ν_μ) X$ cross-sections are measured at a proton-proton centre-of-mass energy $\sqrt{s} = 5.02$ TeV using a dataset corresponding to an integrated luminosity of 100 pb$^{-1}$ recorded by the LHCb experiment. Considering muons in the pseudorapidity range $2.2 < η< 4.4$, the cross-sections are measured differentially in twelve intervals of muon transverse momentum between $28 < p_\mathrm{T} < 52$ GeV. Integrated over $p_\mathrm{T}$, the measured cross-sections are \begin{align*} σ_{W^+ \to μ^+ ν_μ} &= 300.9 \pm 2.4 \pm 3.8 \pm 6.0~\text{pb}, \\ σ_{W^- \to μ^- \barν_μ} &= 236.9 \pm 2.1 \pm 2.7 \pm 4.7~\text{pb}, \end{align*} where the first uncertainties are statistical, the second are systematic, and the third are associated with the luminosity calibration. These integrated results are consistent with theoretical predictions. This analysis introduces a new method to determine the $W$-boson mass using the measured differential cross-sections corrected for detector effects. The measurement is performed on this statistically limited dataset as a proof of principle and yields \begin{align*} m_W = 80369 \pm 130 \pm 33~\text{MeV}, \end{align*} where the first uncertainty is experimental and the second is theoretical.

5 data tables

The measured differential cross sections ($d\sigma/dp_T$) for $W^+$. The first systematic uncertainty is statistical and the second is systematic.

The measured differential cross sections ($d\sigma/dp_T$) for $W^-$. The first systematic uncertainty is statistical and the second is systematic.

The correlation matrix corresponding to the statistical uncertainties on the differential cross-section ($d\sigma/dp_T$) fit results for $W^+$. To combine with $W^-$, use the rows and columns ordered as $W^+$ and then $W^-$. Assume no correlation in the statistical uncertainties between $W^+$ and $W^-$ (zero entries in the off-diagonal blocks).

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Measurement of the nuclear modification factor and prompt charged particle production in $p\mathrm{Pb}$ and $pp$ collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 128 (2022) 142004, 2022.
Inspire Record 1913240 DOI 10.17182/hepdata.131597

The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.

5 data tables

Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.

Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.

Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.

More…

Version 2
Measurements of prompt charm production cross-sections in $pp$ collisions at $\sqrt{s} = 5\,$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 147, 2017.
Inspire Record 1490663 DOI 10.17182/hepdata.74708

Production cross-sections of prompt charm mesons are measured using data from $pp$ collisions at the LHC at a centre-of-mass energy of $5\,$TeV. The data sample corresponds to an integrated luminosity of $8.60\pm0.33\,$pb$^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^0$, $D^+$, $D_s^+$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\text{T}}$, and rapidity, $y$. They cover the rapidity range $2.0<y<4.5$ and transverse momentum ranges $0 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D^0$ and $D^+$ and $1 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D_s^+$ and $D^{*+}$ mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of $1 < p_{\text{T}} < 8\, \text{GeV}/c$ are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively.

14 data tables

Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D^{+} + D^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D_{s}^{+} + D_{s}^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

More…

Observation of $Z$ production in proton-lead collisions at LHCb

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 09 (2014) 030, 2014.
Inspire Record 1300150 DOI 10.17182/hepdata.64260

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.

2 data tables

The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.

The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.


Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 191, 2012.
Inspire Record 1115187 DOI 10.17182/hepdata.62077

The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.

6 data tables

Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.

Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.

Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.

More…

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

23 data tables

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.

More…