The differential cross-section of prompt inclusive production of long-lived charged particles in proton-proton collisions is measured using a data sample recorded by the LHCb experiment at a centre-of-mass energy of ${\sqrt{s} = 13\,\mathrm{TeV}}$. The data sample, collected with an unbiased trigger, corresponds to an integrated luminosity of ${5.4\,\mathrm{nb}^{-1}}$. The differential cross-section is measured as a function of transverse momentum and pseudorapidity in the ranges ${p_\mathrm{T} \in [0.08, 10)\,\mathrm{GeV}\,c^{-1}}$ and ${\eta \in [2.0, 4.8)}$ and is determined separately for positively and negatively charged particles. The results are compared with predictions from various hadronic-interaction models.
Double differential cross-sections of prompt inclusive production of long-lived negatively charged particles as a function of transverse momentum and pseudorapidity.
Double differential cross-sections of prompt inclusive production of long-lived positively charged particles as a function of transverse momentum and pseudorapidity.
Correlation for the uncertainties of the differential cross-section of prompt inclusive production of long-lived charged particles.
This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15<y<4.10$ and transverse momentum in $2<p_T<27\,\textrm{GeV}/c$. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $\sqrt{s}=7$ and $8\,\textrm{TeV}$ data, assuming no $C\!P$ violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in PYTHIA and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in $b$-hadron production at LHC energies.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 8$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ $p_T$ for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.
Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.
The NA62 experiment reports the branching ratio measurement BR$(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\rm stat} \pm 0.9_{\rm syst}) \times 10 ^{-11}$ at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016-2018. This provides evidence for the very rare $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ decay, observed with a significance of 3.4$\sigma$. The experiment achieves a single event sensitivity of $(0.839\pm 0.054)\times 10^{-11}$, corresponding to 10.0 events assuming the Standard Model branching ratio of $(8.4\pm1.0)\times10^{-11}$. This measurement is also used to set limits on BR($K^+ \to \pi^+ X$), where $X$ is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.
Observed and expected upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL.
Observed upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL as functions of X mass and lifetime.
Exclusion region limits on coupling strength \(sin^{2}\theta\) at 90% CL as a function of X mass, for visible X decays.
The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.
Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.
The NA62 experiment at CERN reports searches for $K^+\to\mu^+N$ and $K^+\to\mu^+\nu X$ decays, where $N$ and $X$ are massive invisible particles, using the 2016-2018 data set. The $N$ particle is assumed to be a heavy neutral lepton, and the results are expressed as upper limits of ${\cal O}(10^{-8})$ of the neutrino mixing parameter $|U_{\mu4}|^2$ for $N$ masses in the range 200-384 MeV/$c^2$ and lifetime exceeding 50 ns. The $X$ particle is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper limits of the decay branching fraction for $X$ masses in the range 10-370 MeV/$c^2$ are reported for the first time, ranging from ${\cal O}(10^{-5})$ to ${\cal O}(10^{-7})$. An improved upper limit of $1.0\times 10^{-6}$ is established at 90% CL on the $K^+\to\mu^+\nu\nu\bar\nu$ branching fraction.
See caption of Fig 5.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
A search for the $K^{+}\rightarrow\pi^{+}X$ decay, where $X$ is a long-lived feebly interacting particle, is performed through an interpretation of the $K^{+}\rightarrow\pi^{+}\nu\bar{\nu}$ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of $X$ masses, $0$-$110\,\text{MeV}/c^{2}$ and $154$-$260\,\text{MeV}/c^{2}$, and lifetimes above $100\,\text{ps}$ are considered. The limits set on the branching ratio, $\text{BR}(K^{+}\rightarrow\pi^{+}X)$, are competitive with previously reported searches in the first mass range, and improve on current limits in the second mass range by more than an order of magnitude.
Observed and expected upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL.
Observed upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL as functions of X mass and lifetime.
Exclusion region limits on coupling strength \(sin^{2}\theta\) at 90% CL as a function of X mass, for visible X decays.
The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.
The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.
Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).
Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.
The NA62 experiment at the CERN SPS reports a study of a sample of $4 \times10^{9}$ tagged $\pi^0$ mesons from $K^+ \to \pi^+ \pi^0 (\gamma)$, searching for the decay of the $\pi^0$ to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of $4.4 \times10^{-9}$ is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model-independent upper limit on the branching ratio for the decay $K^+ \to \pi^+ X$, where $X$ is a particle escaping detection with mass in the range 0.110-0.155 GeV$/c^2$ and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming $X$ to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.
The expected upper limit refers to absence of signal.
See caption of Fig 6.
ALP width dominantly visible, see caption of Fig 7.