None
No description provided.
No description provided.
No description provided.
The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
The process γγ→π+π− was measured using the detector MD-1 at VEPP-4. The two-photon reactionse+e−, μ+ μ− and π+ π− pair production were separated using scintillation counters, Cherenkov counters and shower-range chambers. A radiation widthГγγ(f2(1270))=3.1±0.35±0.35 keV was obtained.
Data read from graph.
An analysis is presented of the rapidity and transverse momentum distributions and of the nuclear stopping power in collisions ofπ+ andK+ mesons with Al and Au nuclei at 250 GeV/c. The experimental results are compared to predictions of the additive quark model and the dual parton model. The AQM offers an overall consistent description of the data in this experiment. The DPM reproduces reasonably well the rapidity spectra in the central and projectile fragmentation regions, but fails to describe the nuclear stopping power.
No description provided.
Excluding protons of PLAB < 1.2 GeV.
No description provided.
None
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
No description provided.
Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.
None
No description provided.
No description provided.
(1/N)*D(N)/D(P) HAS BEEN FITTED BY (P/MEAN(N=P))**POWER* EXP(-SLOPE*SQRT(P/MEAN(N=P))).
None
No description provided.
No description provided.
None
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
Charge distributions of projectile fragments produced in the interactions of 22Ne beams with emulsion at 4.1A GeV/c have been studied. Correlations between projectile and target fragments and among projectile fragments are presented. The change of charge yield distribution with the violence of the collision has been shown. The present analysis contradicts theoretical calculations describing the inclusive charge yield distribution of fragments by a single process.
.
.
.