This letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and anti-neutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of $13.6 \, {\rm TeV}$ and corresponding to an integrated luminosity of $(65.6 \pm 1.4) \, \mathrm{fb^{-1}}$. Using the active electronic components of the FASER detector, $338.1 \pm 21.0$ charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: We use the expected neutrino flux to measure the cross section, and we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with Standard Model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays.
The systematic uncertainties of the fitted number of neutrino interactions.
The systematic uncertainties of the fitted number of anti-neutrino interactions.
The systematic uncertainties of the fitted number of neutrino and anti-neutrino interactions.
The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 fb$^{-1}$ collected at center-of-mass energy $\sqrt{s} = 13.6$ TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings $\epsilon \sim 2 \times 10^{-5} - 1 \times 10^{-4}$ and masses $\sim$ 17 MeV - 70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from a U(1)$_{B-L}$ model, with couplings $g_{B-L} \sim 5 \times 10^{-6} - 2 \times 10^{-5}$ and masses $\sim$ 15 MeV - 40 MeV excluded for the first time.
90% confidence level observed exclusion contour in the dark photon parameter space.
90% confidence level observed exclusion contour in the dark photon parameter space.
90% confidence level expected exclusion contour in the B-L gauge boson parameter space.