We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $<p_{t} >$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related $<p_{t}>$ fluctuations near 10 GeV.
Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.
Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.
Centrality dependence of $<p_t>$ fluctuations in the STAR acceptance for four energies. $\nu$ is the mean participant path length (please consult text).