Showing 4 of 4 results
The first ($v_1^{\text{even}}$), second ($v_2$) and third ($v_3$) harmonic coefficients of the azimuthal particle distribution at mid-rapidity, are extracted for charged hadrons and studied as a function of transverse momentum ($p_T$) and mean charged particle multiplicity density $\langle \mathrm{N_{ch}} \rangle$ in U+U ($\roots =193$~GeV), Au+Au, Cu+Au, Cu+Cu, $d$+Au and $p$+Au collisions at $\roots = 200$~GeV with the STAR Detector. For the same $\langle \mathrm{N_{ch}} \rangle$, the $v_1^{\text{even}}$ and $v_3$ coefficients are observed to be independent of collision system, while $v_2$ exhibits such a scaling only when normalized by the initial-state eccentricity ($\varepsilon_2$). The data also show that $\ln(v_2/\varepsilon_2)$ scales linearly with $\langle \mathrm{N_{ch}} \rangle^{-1/3}$. These measurements provide insight into initial-geometry fluctuations and the role of viscous hydrodynamic attenuation on $v_n$ from small to large collision systems.
Two-particle azimuthal correlation functions for various systems for $<Nch>=21\pm3$
Second-order cumulant $c_{2}${4}($\times10^{6})$ vs $<N_{ch}>$ for various systems
$v_{1}^{fluc}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=21\pm3$
$v_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=21\pm3$
$v_{3}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=21\pm3$
$v_{2}/\epsilon_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=21\pm3$
$v_{1}^{fluc}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=70$
$v_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=70$
$v_{3}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=70$
$v_{2}/\epsilon_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=70$
$v_{1}^{fluc}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=140$
$v_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=140$
$v_{3}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=140$
$v_{2}/\epsilon_{2}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=140$
$<Nch>$ dependence of $|v_{1}^{fluc}|$, $v_{2}$, $v_{3}$ and $K$ for Au+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of $|v_{1}^{fluc}|$, $v_{2}$, $v_{3}$ and $K$ for U+U collisions at $\sqrt{s_{NN}}=$ 193 GeV
$<Nch>$ dependence of $|v_{1}^{fluc}|$, $v_{2}$, $v_{3}$ and $K$ for Cu+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of $|v_{1}^{fluc}|$, $v_{2}$, $v_{3}$ and $K$ for Cu+Cu collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of $|v_{1}^{fluc}|$, $v_{2}$, $v_{3}$ and $K$ for d+Au and p+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of elliptic flow scaled with eccentricity ($v_{2}/\epsilon_{2}$) for Au+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of elliptic flow scaled with eccentricity ($v_{2}/\epsilon_{2}$) for U+U collisions at $\sqrt{s_{NN}}=$ 193 GeV
$<Nch>$ dependence of elliptic flow scaled with eccentricity ($v_{2}/\epsilon_{2}$) for Cu+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of elliptic flow scaled with eccentricity ($v_{2}/\epsilon_{2}$) for Cu+Cu collisions at $\sqrt{s_{NN}}=$ 200 GeV
$<Nch>$ dependence of elliptic flow scaled with eccentricity ($v_{2}/\epsilon_{2}$) for d+Au and p+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
Ratios of the slopes extracted for each system relative to the slope extracted from a fit to the combined data sets
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum, p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The proton and anti-proton elliptic flow for 0–80% central Au+Au collisions at √sNN= 19.6 GeV, where “(+,-) EP” refers to the event plane reconstructed using all of the charged particles and “(-) EP” refers to the event plane reconstructed using only the negatively charged particles.
We present STAR results on the elliptic flow v_2 of charged hadrons, strange and multi-strange particles from sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC. The detailed study of the centrality dependence of v_2 over a broad transverse momentum range is presented. Comparison of different analysis methods are made in order to estimate systematic uncertainties. In order to discuss the non-flow effect, we have performed the first analysis of v_2 with the Lee-Yang Zero method for K_s^0 and Lambda. In the relatively low p_T region, p_T <= 2 GeV/c, a scaling with m_T - m is observed for identified hadrons in each centrality bin studied. However, we do not observe v_2(p_T) scaled by the participant eccentricity to be independent of centrality. At higher p_T, 2 GeV/c <= p_T <= 6 GeV/c, v_2 scales with quark number for all hadrons studied. For the multi-strange hadron Omega, which does not suffer appreciable hadronic interactions, the values of v_2 are consistent with both m_T -m scaling at low p_T and number-of-quark scaling at intermediate p_T. As a function of collision centrality, an increase of p_T-integrated v_2 scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
$v_{2}(\eta)$ for charged hadrons, $0.15 < p_{T} < 2.0$ GeV/c, centrality $10-40\%$, from $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 10–40$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the Event Plane method (open circles).
$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 10–40$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the 4-particle cumulant method (solid squares).
$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 10–40$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the Lee-Yang Zero method (solid circles) with Sum Generating Function.
$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 0–80$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the Event Plane method.
$p_{T}$ integrated charged hadron $v_{2}$ in the TPC as a function of geometrical cross section. Shown are the Event Plane method ($v_{2}${EP}) (open circles). All data are from $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV. For the TPC, $|\eta|< 1.0$ was used.
$p_{T}$ integrated charged hadron $v_{2}$ in the TPC as a function of geometrical cross section. Shown are the 4 Cumulant method ($v_{2}${4}) (solid squares). All data are from $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV. For the TPC, $|\eta|< 1.0$ was used.
$p_{T}$ integrated charged hadron $v_{2}$ in the TPC as a function of geometrical cross section. Shown are the Lee-Yang Zero method with Sum Generating Function ($v_{2}$) (solid circles). All data are from $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV. For the TPC, $|\eta|< 1.3$ was used.
$p_{T}$ integrated charged hadron $v_{2}$ in the TPC as a function of geometrical cross section. Shown are the Lee-Yang Zero method with Product Generating Function ($v_{2}$) (open stars). All data are from $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV. For the TPC, $|\eta|< 1.3$ was used.
$v_{2}$ as a function of $p_{T}$ for $10–40\%$ centrality using $\eta$-subevent method (open crosses), are shown in (a) for $\Lambda$. All data are from $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions.
$v_{2}$ as a function of $p_{T}$ for $10–40\%$ centrality using Event Plane method (open circles), are shown in (a) for $\Lambda$. All data are from $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions.
$v_{2}$ as a function of $p_{T}$ for $10–40\%$ centrality using $\eta$-subevent method (open crosses), are shown in (b) for $K_{S}^{0}$. All data are from $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions.
$v_{2}$ as a function of $p_{T}$ for $10–40\%$ centrality using Event Plane method (open circles), are shown in (b) for $K_{S}^{0}$. All data are from $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions.
$v_{2}$ as a function of $p_{T}$ for $10–40\%$ centrality using Lee-Yang Zero method with Sum Generating Function (solid circles), are shown in (a) and (b) for $\Lambda$ and $K_{S}^{0}$ respectively. All data are from $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions.
$v_{2}$ of $K_{S}^{0}$ (open circles) as a function of $p_{T}$ for (a) $0–80\%$, (b) $40–80\%$, (c) $10–40\%$ and (d) $0–10\%$ centralities in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Lambda+\bar{\Lambda}$ (open squares) as a function of $p_{T}$ for (a) $0–80\%$, (b) $40–80\%$, (c) $10–40\%$ and (d) $0–10\%$ centralities in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Xi^{-}+\bar{\Xi}^{+}$ (filled triangles) as a function of $p_{T}$ for (a) $0–80\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Xi^{-}+\bar{\Xi}^{+}$ (filled triangles) as a function of $p_{T}$ for (b) $40–80\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Xi^{-}+\bar{\Xi}^{+}$ (filled triangles) as a function of $p_{T}$ for (c) $10–40\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Xi^{-}+\bar{\Xi}^{+}$ (filled triangles) as a function of $p_{T}$ for (d) $0–10\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Omega^{-}+\bar{\Omega}^{+}$ (filled circles) as a function of $p_{T}$ for (a) $0–80\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $\Omega^{-}+\bar{\Omega}^{+}$ (filled circles) as a function of $p_{T}$ for (d) $0–10\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
$v_{2}$ of $p+\bar{p}$ (filled squares) and $\pi^{+}+\pi^{-}$ (filled stars) as a function of $p_{T}$ for (a) $0–80\%$ centrality in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.
Fig12d inset $\Lambda$ (open squares) expansion at low $p_{T}$
Fig12d inset for $K_{S}^{0}$ (filled circles) expansion at low $p_{T}$
Fig13 Centrality dependence of $v_{2}$ versus number of participants $N_{part}$ for charged hadrons (crosses) in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. For identified particle's value, $v_{2}$ in Tab. II scaled by participant eccentricity in Tab. I versus number of participant in Tab. I.
Fig14 $p_{T}$ dependence of $v_{2}$ of $K_{S}^{0}$ at 200 GeV.
Fig14 $p_{T}$ dependence of $v_{2}$ of $\Lambda$ at 200 GeV.
We report on the first measurement of elliptic flow $v_2(p_T)$ of multi-strange baryons $\Xi+\bar{Xi}$ and $\Omega+\bar{Omega} in heavy-ion collisions. In minimum bias Au+Au collisions at sqrt(s_NN) = 200 GeV, a significant amount of elliptic flow, comparable to other non-strange baryons, is observed for multi-strange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The $p_T$ dependence of $v_2$ of the multi-strange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultra-relativistic nuclear collisions at RHIC.
$\Xi^{-} + \Xi^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$\Omega^{-} + \Omega^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Azimuthal distributions with respect to the event plane of the $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ raw yields.
$v_2(p_T)$ of $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ from 200 GeV Au+Au minimum bias collisions.
Number of quark ($n_q$) scaled $v_2$ as a function of scaled $p_T$ for $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ from 200 GeV Au+Au minimum bias collisions.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.