Direct-Photon Production in p+p Collisions at sqrt(s)=200 GeV at Midrapidity

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 86 (2012) 072008, 2012.
Inspire Record 1115828 DOI 10.17182/hepdata.143075

The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transverse-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.

3 data tables

Cross section of midrapidity inclusive-direct photon production in $p+p$ collisions at $\sqrt{s}$ = 200 GeV as a function of transverse momentum ($p_T$). Asymmetric statistical uncertainties occur in $p_T$ bins with no tagged $π^0$ counts.

Ratio of isolated/inclusive-direct photon (Fig. 13). Upper(+) and lower bounds(-) on systematics can be different, and are listed separately.

Ratio of isolated/inclusive photon from $π^0$ (Fig. 13).


Detailed measurement of the $e^+ e^-$ pair continuum in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for direct photon production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 81 (2010) 034911, 2010.
Inspire Record 838580 DOI 10.17182/hepdata.145190

PHENIX has measured the e^+e^- pair continuum in sqrt(s_NN)=200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e^+e^- yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c^bar-c production, though other mechanisms are not ruled out. In the low mass region (below the phi) the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7+/-0.4(stat)+/-1.5(syst)+/-0.9(model) At low mass (m_ee<0.3 GeV/c^2) and high p_T (1<p_T<5 GeV/c) an enhanced e^+e^- pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p_T, with inverse slope T=221+/-19(stat)+/-19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T_init ~=300--600 MeV at times of 0.6--0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p_T<1 GeV/c the low mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T ~=100 MeV. Theoretical models under predict the low mass, low p_T enhancement.

113 data tables

(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in $p$+$p$ collisions compared to the expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.

(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in minimum-bias Au+Au compared to expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The charm contribution expected if the dynamic correlation of $c$ and $\bar{c}$ is removed is shown separately. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.

(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in minimum-bias Au+Au compared to expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The charm contribution expected if the dynamic correlation of $c$ and $\bar{c}$ is removed is shown separately. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.

More…