High-precision measurements of electron-positron annihilation into final states of two, three, and four photons are presented. The data were obtained with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. The measured e+e−→γγ differential cross section is used to test the validity of quantum electrodynamics (QED) in this energy range; it agrees well with QED, and the limit on cutoff parameters for the electron propagator is Λ>66 GeV. The measurement of e+e−→γγγ is used to test the QED calculations of order α3 and to search for anomalies that would indicate the existence of new particles; the agreement with QED is excellent and no anomalies are found. Two events from the reaction e+e−→γγγγ are found, in agreement with the QED prediction.
Errors are combined statistical and systematics.
No description provided.
Two 4gamma events are observed corresponding to a cross section of 0.02 PB.
None
No description provided.
A high-precision measurement of the differential cross section for Bhabha scattering (e+e−→e+e−) is presented. The measurement was performed with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. Effects due to electroweak interference are observed and agree well with the predictions of the Glashow-Salam-Weinberg model. The agreement between the data and the electroweak prediction rules out substructure of the electron up to mass scales of 1 TeV.
Error contains both statistics and systematics.
No description provided.
No description provided.
We measure an inclusive branching fraction of (13.9 ± 2.0−2.2+1.9)% for the decay τ−→ντπ−π0+nh0(n>~1), where h0 is a π0 or an η. The data sample, obtained with the time-projection-chamber detector facility at the SLAC e+e− storage ring PEP, corresponds to an integrated luminosity of 72 pb−1 at 29 GeV center-of-mass energy. The measured branching fraction is somewhat greater than the theoretical prediction and, with errors taken into account, could resolve the present difference between the inclusive and the sum of the exclusive τ± branching fractions into one charged prong.
No description provided.
No description provided.
High statistics data for the reaction K − p→K − π + n at 11 GeV / c have been obtained in the LASS spectrometer at SLAC. A spherical harmonic moments analysis provides clear evidence for the production of the complete leading orbitally excited K ∗ series up through J P = 5 − . New measurements are made of the masses and widths of the 1 − K ∗ (892), 2 + K ∗ (1430 ), 3 − K ∗ (1780), and 4 + K ∗ (2060), and evidence is presented for the production of a new K ∗ state at 2382 MeV / c 2 with spin-parity 5 − .
Unnormalised acceptance corrected spherical moments.
Correlation matrices.
Correlation matrices.
An absolute measurement of π0 photoproduction on the proton has been carried out in the threshold region (from 144.7 to 173 MeV) by use of tagged annihilation photons. The measured cross sections, differential in the recoiling-proton energy, are used to perform a multipole analysis which gives a value & &, in disagreement with low-energy-theorem predictions. Total cross sections and coefficients of the π0 angular distribution are presented.
No description provided.
This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.
Charged particle multiplicity distribution for the Inclusive Data Sample.
Charged particle multiplicity distribution for the Two Jet Data Sample.
Properties of multiplicity distributions for Inclusive Data Sample.
The ratios R vp and R vp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2 θ w (M w MS of 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u 2 l − d 2 L = −0.080 ± 0.043 ± 0.012 and u 2 R − d 2 R = 0.021±0.055±0.028.
No description provided.
Data on antiproton-proton cross sections at the c.m. energies 200 and 900 GeV are presented. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode in which the same beams were accelerated and decelerated between beam energies of 450 and 100 GeV. The properties of the machine determine the ratio of the luminosities at the two energies to about 1% and thus an accurate measurement of the ratioR of the inelastic cross sections could be made. We findR (=σ900/σ200)=1.20±0.01±0.02, where the first error is statistical and the second systematic. Interpolating existing data to estimateσine1(200 GeV) this measurement ofR leads toσine1(900 GeV)=50.3+0.4+1.0 mb. Using an extrapolated value ofσe1/σtot we estimate the total cross section at 900 GeV to be 65.3±0.7±1.5 mb. Both the inelastic and total cross sections are compatible with a ln2s dependence. Comparisons are made with different fits to the total cross section energy dependence.
Ratio of inelastic cross sections at 900 and 200 Gev.
Estimate of 900 Gev total cross section based on a) interpolation to obtain total cross section at sqrt(s)=200 Gev (51.6 +- 0.4mb.) b) interpolation and extrapolation to obtain the ratio of elastic to total cross sections at 200 & 900 Gev (0.19 +- 0.01 and 0.23 +- 0.01 respectively).
Using the UA2 apparatus, the inclusive cross section has been measured for production of high- p T direct photons in p̄p collisions at s =546 GeV and s =630 GeV . The results are in good agreement with QCD predictions.
No description provided.
No description provided.