In this paper a comparison of the general features of the reactions K ± p→Q ± p (1) at incident momentum 8.25 GeV/ c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K ± p→K ± π + π − p in exposures of the CERN 2m HBC to RF-separated K + and K − beams. The (K ππ ) effective mass distributions, production angular distributions in the Q region (1.2⩽ M (K ππ )⩽1.5 GeV) and corresponding decay angular distributions are exhibited, and background effects due to N ∗ and Δ production are systematically studied. In particular, it is found that the distributions d σ /d t ′ and d σ /d t for reactions (1) are adequately described by exponential functions over the interval 0.05–0.35 GeV 2 , and exhibit a cross-over effect for momentum transfer squared −0.1 GeV 2 . For both reactions a flattening of d σ /d t ′ for t ′ < 0.05 GeV 2 is observed. By studying the Chew-Low plots and the effects of the different cuts it was found that this flattening cannot be attributed to amplitudes with net s -channel helicity flip different from zero, at least at these energies.
ABOUT 7 PCT RELATIVE NORMALIZATION UNCERTAINTY FOR K+ AND K- SAMPLES.
FITS TO D(SIG)/DT AND D(SIG)/DTP FOR Q+ AND Q- PRODUCTION TO DETERMINE CROSS-OVER POSITIONS. DATA HAVE MASS CUTS TO SELECT K*0 AND REMOVE DEL++ AND DEL0. MIN IS THE MINIMUM VALUE OF -T FOR THE RELEVANT (K PI PI) MASS.
The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.
No description provided.
K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.
L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.
In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
QUOTED ERRORS INCLUDE EFFECTS OF CORRECTIONS.
No description provided.
Cross sections and density-matrix elements for π−p→ϕn have been measured for - −t≲1.5 GeV2 at 3, 4, 5, and 6 GeV/c, using the Argonne effective-mass spectrometer to observe the decay ϕ(1019)→K+K−. This is the first observation of the reaction in this energy range. The remarkably flat differential cross section at 4 GeV/c and the strong energy dependence suggest a production mechanism not normally seen at these energies. Data on K−p→ϕΛ and K−p→ϕΣ0 from the same experiment are also presented.
No description provided.
No description provided.
In an experiment with the CERN 2 metre DBC the reaction K$^+$d $\to$ K$^0 \pi^+$d is studied at an incident momentum of 4.6 GeV/c. The cross section is found to be (66 ± 10) μb for four-momentum transfer squared from target to recoil deuteron greater than 0.02 GeV 2 , and the reaction is dominated by the production of K$^*+$ (892) via natural parity exchange. Using data for the reactions K$^\pm$d $\to$ K$^{*\pm}$(892)d in the incident momentum range 2–13 GeV/ c the parameters of the effective exchanged trajectory are estimated.
No description provided.
No description provided.
No description provided.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
AVERAGED OVER ALL PRODUCTION ANGLES.
The transverse momentum distribution at 90° of pions, protons and antiprotons have been measured at the CERN intersecting storage rings for C.M. energies between 23.2 and 52.7 GeV. In this energy range, the pion and proton distributions are almost energy independent. The antiproton production rises by a factor of two between 23.2 and 52.7 GeV.
The invariant cross section was fitted by CONST*EXP(-SLOPE*PT).
The invariant cross section was fitted by CONST*EXP(-SLOPE(C=1)*PT+SLOPE(C=2)*PT**2).
No description provided.