High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
Differential cross section for the W range 1.68 to 1.69 GeV.
Differential cross section for the W range 1.69 to 1.70 GeV.
Differential cross section for the W range 1.70 to 1.71 GeV.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.
R values.
We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.
Measured values of G1N ang G2N.
Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.
Cross section and proton form factor measurements. The cross section quoted is the lowest order cross section corrected for initial and final state radiation and coulomb effects.
The longitudinal and transverse components of the cross section for the $e p\to e^\prime p \rho^0$ reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of $x_B$ from 0.2 to 0.6 and of $Q^2$ from 1.5 to 3.0 GeV$^2$. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter.
The ratio of the longitudinal to transverse cross sections for two Q**2 regions.
The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.31.
The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.38.
Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.2 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.6 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 3.0 GeV.. Errors are statistical and systematic added in quadrature.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.