We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.
Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.
The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.
No description provided.
The survival time spectrum of slow antineutrons produced in a LH2 target has been measured. From these data the imaginary part of the I=1 spin averaged S‐wave antineutron proton scattering length has been deduced to be Im a1= −0.83±0.07 fm. The result lies within the range of values calculated from current potential models.
THE VALUE AT PLAB = 0. HAVE BEEN OBTAINED BY EXTRAPOLATION.
Total and annihilation n¯p cross sections from 100 to 500 MeV/c are reported, the first such measurements with good statistics in this momentum range. These cross sections are well represented by A+B/p, where p is the incident antineutron momentum, and are in agreement with previous n¯p and p¯n measurements. A comparison of these cross sections with phenomenological potential model calculations is good overall. However, the microscopic quark model gives unsatisfactory predictions. The agreement between previous p¯p annihilation cross sections and n¯p cross sections above 300 MeV/c is excellent. The total n¯p cross section is lower than the total p¯p cross section in this momentum range. Both of these types of behavior are predicted by potential models. The anticipated availability of future p¯p data below 300 MeV/c should indicate whether these trends continue at lower momenta.
No description provided.
Using the freon filled bubble chamber SKAT in the (anti)neutrino wide band beam of the Serpukhov accelerator we determine the neutral to charged current cross section ratios for neutrinos and antineutrinos below 30GeV. From these ratios we calculate in leading order a mixing parameter of the standard model of Θw=0.215±0.029.
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
The total electromagnetic cross sections of g-rays in hydrogen and deuterium have been measured over the energy range 265–4215 MeV using a photon tagging system. From these measurements, the total pair production cross sections are obtained, and the results are found to be in good agreement with the predictions of Jost, Luttinger and Slotnick.
Axis error includes +- 1/1 contribution.
Axis error includes +- 1/1 contribution.
The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.
No description provided.
RESONANCE REGION. UNSMEARING CORRECTION APPLIED, GLAUBER CORRECTION NEGLIGIBLE.
HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.
The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.
No description provided.
SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.