n p annihilations with ⩾ 3 prongs with an incident antineutron momentum between 0.5 and 0.8 GeV/ c are analysed. We present the topological branching ratios and cross sections, the resonance production rates and possible ϱ-ω interference effects.
CHANNEL FRACTIONS IN <2PI+ PI- PI0> FINAL STATE.
Data on the reaction π − p → π + π − π 0 have been taken at 12 and 15 GeV/ c with the CERN Omega multiparticle spectrometer. In a 3-pion partial-wave analysis strong production of A 2 0 (1310) and ω ∗ (1675) is observed. Total and differential cross sections are determined and density matrix elements presented as a function of t in the t - and s -channel frames. The energy dependence of A 2 0 production is studied, and a comparison of ω(780), A 2 0 (1310) and ω ∗ (1675) production is made.
No description provided.
No description provided.
No description provided.
None
FOR THE FPRIME A PURE 2+ STATE IS ASSUMED AND ONLY JZ=+1,0,-1 CONTRIBUTIONS ARE CONSIDERED.
No description provided.
No description provided.
From a study of D mesons produced in the decay ψ(3772)→DD¯, we have determined the masses of the D0 and D+ mesons to be 1863.3±0.9 MeV/c2 and 1868.3±0.9 MeV/c2, respectively. Under the assumption that the ψ(3772) has a definite isospin and decays only to DD¯, the D0 branching fractions to K−π+, K¯0π+π−, and K−π+π−π+ are (2.2±0.6)%, (4.0 ± 1.3)%, and (3.2±1.1)% and the D+ branching fractions to K¯0π+ and K−π+π+ are (1.5±0.6)% and (3.9±1.0)%.
AROUND PSI(3772)0 PEAK. UPPER BOUNDS EACH SIDE OF PEAK ARE TABULATED IN M. PICCOLO ET AL., PL 86B, 220 (1979).
We have studied the coherent dissociation of neutrons into pπ− systems, for a variety of nuclear targets, at incident momenta up to 300 GeV/c. Using a model incorporating both electromagnetic and hadronic production, we have extracted total cross sections for scattering of unstable pπ− systems on nucleons.
No description provided.
A bubble-chamber experiment based on 304 000 events of p¯p interactions at 2.32 GeV/c is described. The film was automatically scanned and measured by the POLLY II system. Details of the data-analysis methods are given. We report results on cross sections for constrained final states, tests of C invariance, and inclusive pion and ρ0 multiplicity parameters for annihilation final states.
Axis error includes +- 4/4 contribution.
Axis error includes +- 4/4 contribution.
Inclusive production of Λ0 hyperons by 300-GeV protons has been measured at fixed production angles in the laboratory between 0 and 9 mrad and laboratory momenta from 65 to 300 GeV/c. Three different solid targets were used: beryllium, copper, and lead. The A dependence of the data is suggestive of a collision model in which the hadron loses energy and gains transverse momentum as it leaves the nucleus. The experimental results are compared to such a model, and the implications are discussed.
No description provided.
No description provided.
No description provided.
We present the results of a search at Fermilab for the charmed meson, D∘(1865), produced in association with a prompt muon by 300-GeV/c neutrons. We observe no significant enhancement in high-mass K±π∓ systems and report, at the 95% confidence level, an upper limit of 200 nb/nucleon for the production of a pair of charmed particles and their subsequent decay into a K±π∓ state and a prompt muon.
The cross section for D0 and CHARM particle production is obtained with theassumption that BR(D0 --> K- PI+) = 3 PCT and BR(CHARM --> MU+ X) = 15 PCT.
We present the results of a search for leptons produced in coincidence with a prompt muon in neutron-beryllium collisions at 300 GeV/c. The experiment was sensitive to trigger muons and associated leptons of both low momentum and low transverse momentum. A clear μ±μ∓ signal was found, but no significant μ±e∓ signal was observed. We report an upper limit for associated charmed-particle production [σCC¯·B(C→μ+X)·B(C→e+X)] of < 340 nb/nucleon, at the 95% confidence level.
The cross section for CHARM and CHARMBNAR particle production is obtained with the assumption that BR(CHARM --> MU+ X) = 15 PCT.
None
No description provided.
No description provided.
No description provided.