The differential cross section for η production in reaction π−p→ηn has been measured over the full angular range at seven incident π− beam momenta from threshold to pπ−=747 MeV/c using the Crystal Ball multiphoton spectrometer. The angular distributions are S wave dominated. At 10 MeV/c above threshold, a small D-wave contribution appears that interferes with the main S wave. The total η production cross section σtot is obtained by integration of dσ/dΩ. Starting at threshold, σtot rises rapidly, as expected for S-wave-dominated production. The features of the π−p→ηn cross section are strikingly similar to those of the SU(3) flavor-related process K−p→ηΛ. Comparison of the π−p→ηn reaction is made with η photoproduction.
Total cross sections.
Differential cross section for the 4 lowest beam momenta.
Differential cross section for the 3 highest beam momenta.
Measurements of the production of high transverse momentum direct photons by a 515 GeV/c piminus beam and 530 and 800 GeV/c proton beams in interactions with beryllium and hydrogen targets are presented. The data span the kinematic ranges of 3.5 < p_T < 12 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive direct-photon cross sections are compared with next-to-leading-order perturbative QCD calculations and expectations based on a phenomenological parton-k_T model.
Invariant cross sections per nucleon for P BE collisions at 800 GeV.
Invariant cross sections per nucleon for P BE collisions at 530 GeV.
Invariant cross sections per nucleon for PI- BE collisions at 515 GeV.
Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.
Measured total cross section. Statistical errors only.
Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.
Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 550 to 678 MeV/c. Statistical errors only.
Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.
The errors shown are statistical only.
The errors shown are statistical only.
The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.
We present results on the production of high transverse momentum pizero and eta mesons in pi-p and pi-Be interactions at 515 GeV/c. The data span the kinematic ranges 1 < p_T < 11 GeV/c in transverse momentum and -0.75 < y < 0.75 in rapidity. The inclusive pizero cross sections are compared with next-to-leading order QCD calculations and to expectations based on a phenomenological parton-k_T model.
Invariant differential cross section per nucleon for inclusive PI0 production in PI- BE collisions at 515 GeV averaged over the cm rapidity interval -0.75 to 0.75.
Invariant differential cross section for inclusive PI0 production in PI- P collisions at 515 GeV averaged over the cm rapidity interval -0.75 to 0.75.
The averaged invariant differential cross section per nucleon as a functionof rapidity in the PT intervals 1.00 to 1.50 and 1.50 to 2.00 GeV for PI0 produ ction in PI- BE interactions at 515 GeV.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
High quality analyzing powers for the π−p→→π0n reaction have been obtained with a polarized proton target over a broad angular range at incident kinetic energies of 98.1, 138.8, 165.9, and 214.4 MeV. This experiment nearly doubled the existing πN single-charge-exchange database for energies ranging from 10 to 230 MeV, with 36 new analyzing powers. The Neutral Meson Spectrometer was used to detect the outgoing neutral pions. The data are well described by recent phase-shift analyses. When combined with high-precision and accurate cross section data at the same energies, the data can provide a good test of the degree of isospin breaking in the region of the Δ(1232) resonance. They will also be helpful for constraining the evaluation of the pion-nucleon σ term from the scattering amplitudes.
First error is total uncertainty.
First error is total uncertainty.
First error is total uncertainty.
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).