A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.
Total W+ W- cross section measurement. The DSYS error corresponds to the total systematic error.
Cross section for W+ W- production in different decay channels. The DSYS error corresponds to the total systematic error.
New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.
Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.
Absolute J/ ψ and ψ ′ production cross sections have been measured at the CERN SPS, with 450 GeV/ c protons incident on a set of C, Al, Cu and W targets. Complementing these values with the results obtained by experiment NA51, which used the same beam and detector with H and D targets, we establish a coherent picture of charmonia production in proton-induced reactions at SPS energies. In particular, we show that the scaling of the J/ ψ cross section with the mass number of the target, A, is well described as A α , with α ψ =0.919±0.015. The ratio between the J/ ψ and ψ ′ yields, in our kinematical window, is found to be independent of A, with α ψ ′ − α ψ =0.014±0.011.
The ratio of the production cross sections, in the di-muon channel. Note that there are wo set of CU and WT data with targets of different lengths. An average values is also given for these.
The J/PSI absolute cross sections, times the BR to di-muons.
The PSI(3685) absolute cross sections, times the BR to di-muons.
Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.
The given errors are statistical only. The cross section presented as a function of the nominal excess energy.
We present results from Experiment 864 for antiproton production and antideuteron limits in Au + Pb collisions at 11.5 GeV/c per nucleon. We have measured invariant multiplicities for antiprotons for rapidities 1.4<y<2.4 at low transverse momentum as a function of collision geometry. When compared with the results from Experiment 878 our measurements suggest a significant contribution to the measured antiproton yield from the decay of strange antibaryons. We have also searched for antideuterons and see no statistically significant signal. Thus, we set upper limits on the production at approximately 3 x 10^{-7} per 10% highest multiplicity Au + Pb interaction.
CENTRALITY = 10 PCT.
CENTRALITY = 100 TO 70 PCT.
CENTRALITY = 70 TO 30 PCT.
We report the first precision measurements of the scaled momentum, the charge multiplicity, and the thrust of hadronic jets in the Breit frame in Deep Inelastic Scattering ν μ N and ν ̄ μ N charged current events over the Q 2 range from 1 to 100 GeV 2 . The neutrino data, obtained in the NOMAD experiment at the CERN SPS, extend the Q 2 -evolution of these parameters by two orders of magnitude, and with commensurate precision, when compared to those reported by the ep and e + e − experiments.
Average neutrino energy. Peak postion of distribution on log(1/z) is presented.
The cross section of charm production in γγ collisions σ(e + e − →e + e − c c ̄ X) is measured at LEP with the L3 detector at centre-of-mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semileptonic decays. The direct process γγ→c c ̄ is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.
Total cross section for inclusive charm production.
Results from a 4π solid angle measurement of the inclusive reaction (π+,π0) on 2H, 3He, and 4He at incident pion energies of Tπ+=70, 118, 162, 239, and 330 MeV are presented. The single charge exchange total cross sections were determined, and are compared to previous results and simple models of π–few-nucleon interactions. On the helium isotopes a strong damping of the cross sections in the Δ(1232) energy region is observed. Total cross sections of the breakup reaction π++2H →π+pn are also given.
No description provided.
Neutron fluences were measured from 435 MeV/nucleon Nb ions stopping in a Nb target and 272 MeV/nucleon Nb ions stopping in targets of Nb and Al for neutrons above 20 MeV and at laboratory angles between 3° and 80°. The resultant spectra were integrated over angles to produce neutron energy distributions and over energy to produce neutron angular distributions. The total neutron yields for each system were obtained by integrating over the angular distributions. The angular distributions from all three systems are peaked forward, and the energy distributions from all three systems show an appreciable yield of neutrons with velocities greater than the beam velocity. Comparison of the total neutron yields from the two Nb+Nb systems suggests that the average neutron multiplicity decreases with decreasing projectile energy. Comparison of the total yields from the two 272 MeV/nucleon systems suggests that the total yields show the same dependence on projectile and target mass number as do total inclusive neutron cross sections. The data are compared with Boltzmann-Uehling-Uhlenbeck model calculations.
No description provided.
No description provided.
We report the measurement of secondary charge and isotopic fragmentation cross sections in a liquid hydrogen target from 30 incident beams of relativistic nuclei ranging from 10B to 55Mn. These individual beams were obtained by initially accelerating 580 MeV/nucleon 40Ar and 630 MeV/nucleon 56Fe nuclei and letting these nuclei interact in a thin CH2 target in the beam line. The fragments of these interactions were then focused according to their A/Z ratios onto a hydrogen target and the charge and isotopic composition of the fragmentation in this target was measured using our standard cosmic ray telescope. Several of these nuclei have had their cross sections measured previously and a comparison with earlier data confirms the estimated precision ∼5% of the new cross section data. The 30 nuclei for which the cross sections were measured doubles the previously reported data for 15 nuclei from several experiments in the charge range from Li to Ni. The systematics of these new cross sections are discussed both with respect to the charge changing and isotopic cross sections. These systematics will lead to improvements in the productive capability of the formulas used to describe the unmeasured cross sections. It should be noted, however, that from the point of view of the propagation of galactic cosmic rays through the interstellar medium, which is one of the main goals of this experiment, the fragmentation cross sections have now been measured at at least one energy for over 98% of the arriving particles with Z=3–28.
No description provided.
No description provided.