Neutron fluences were measured from 435 MeV/nucleon Nb ions stopping in a Nb target and 272 MeV/nucleon Nb ions stopping in targets of Nb and Al for neutrons above 20 MeV and at laboratory angles between 3° and 80°. The resultant spectra were integrated over angles to produce neutron energy distributions and over energy to produce neutron angular distributions. The total neutron yields for each system were obtained by integrating over the angular distributions. The angular distributions from all three systems are peaked forward, and the energy distributions from all three systems show an appreciable yield of neutrons with velocities greater than the beam velocity. Comparison of the total neutron yields from the two Nb+Nb systems suggests that the average neutron multiplicity decreases with decreasing projectile energy. Comparison of the total yields from the two 272 MeV/nucleon systems suggests that the total yields show the same dependence on projectile and target mass number as do total inclusive neutron cross sections. The data are compared with Boltzmann-Uehling-Uhlenbeck model calculations.
No description provided.
No description provided.
We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120/pb of data collected in pbar-p collisions at sqrt(s) = 1.8 TeV by the D0 collaboration during 1992-96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.
Dielectron production cross section.
We have measured the form factor ratios r_V = V(0)/A_1(0) and r_2 = A_2(0)/A_1(0) for the decay D_s^+ -> phi ell^+ nu_ell, phi -> K^+ K^-, using data from charm hadroproduction experiment E791 at Fermilab. Results are based on 144 signal and 22 background events in the electron channel and 127 signal and 34 background events in the muon channel. We combine the measurements from both lepton channels to obtain r_V = 2.27 +- 0.35 +- 0.22 and r_2 = 1.57 +- 0.25 +- 0.19.
With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.
The predicted effects of final state interactions such as colour reconnection are investigated by measuring properties of hadronic decays of W bosons, recorded at a centre-of-mass energy of sqrt(s)=182.7 GeV in the OPAL detector at LEP. Dependence on the modelling of hadronic W decays is avoided by comparing W+W- -> qqqq events with the non-leptonic component of W+W- -> qqlnu events. The scaled momentum distribution, its mean value, x_p, and that of the charged particle multiplicity, n_ch, are measured and found to be consistent in the two channels. The measured differences are: Diff(x_p) = +0.7 +- 0.8 +- 0.6 and Diff(n_ch) = (-0.09 +- 0.09 +-0.05)*10**-2. In addition, measurements of rapidity and thrust are performed for W+W- -> qqqq events. The data are described well by standard QCD models and disfavour one model of colour reconnection within the ARIADNE program. The current implementation of the ELLIS-GEIGER model of colour reconnection is excluded. At the current level of statistical precision no evidence for colour reconnection effects was found in the observables studied. The predicted effect of colour reconnection on OPAL measurements of M_W is also quantified in the context of models studied.
Here Z is defined as Z = 2*P(C=HADRON)/SQRT(S).
With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.
Total cross section for DIS D*+- production in the specified kinemtaic range.
DIS cross section as a function of the transverse D* momentum in the laboratory frame.
DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.
The triple-differential dijet cross-section, d^3 sigma_{ep}/dQ2 dE_t2 dxgjets, is measured with the H1 detector at HERA as a function of the photon virtuality Q^2, the fraction of the photon's momentum carried by the parton entering the hard scattering, xgjets, and the square of the mean transverse energy, E_t2, of the two highest E_t jets. Jets are found using a longitudinal boost-invariant k_T clustering algorithm in the gamma* p center of mass frame. The measurements cover the ranges 1.6 < Q^2 < 80 GeV$^2 in virtuality and 0.1 < y < 0.7 in inelasticity y. The results are well described by leading order QCD models which include the effects of a resolved component to the virtual photon. Models which treat the photon as point-like fail to describe the data. An effective leading order parton density for the virtual photon is extracted as a function of the photon virtuality, the probing scale and the parton momentum fraction. The x_gamma and probing scale dependences of the parton density show characteristic features of photon structure, and a suppression of this structure with increasing Q^2 is seen.
No description provided.
No description provided.
No description provided.
High quality analyzing powers for the π−p→→π0n reaction have been obtained with a polarized proton target over a broad angular range at incident kinetic energies of 98.1, 138.8, 165.9, and 214.4 MeV. This experiment nearly doubled the existing πN single-charge-exchange database for energies ranging from 10 to 230 MeV, with 36 new analyzing powers. The Neutral Meson Spectrometer was used to detect the outgoing neutral pions. The data are well described by recent phase-shift analyses. When combined with high-precision and accurate cross section data at the same energies, the data can provide a good test of the degree of isospin breaking in the region of the Δ(1232) resonance. They will also be helpful for constraining the evaluation of the pion-nucleon σ term from the scattering amplitudes.
First error is total uncertainty.
First error is total uncertainty.
First error is total uncertainty.
DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.
Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.
Integrated rates extrapolated to the full x range.
Measurements of the two-photon interaction e + e − → e + e − + hadrons at s ≃ 91 GeV and s ≃ 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to interated luminosities of 140 pb −1 at 91 GeV and 52 pb −1 at 183 GeV. The cross-section of γ ∗ γ ∗ collisions has been measured at 〈 Q 2 〉 = 3.5 GeV 2 and 〈 Q 2 〉 = 14 GeV 2 . The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.
No description provided.
No description provided.
No description provided.
A detailed study of J/ ψ , ψ ′ and Drell-Yan production in S-U collisions has been performed by experiment NA38 at the CERN SPS. This paper presents production cross sections and their centrality dependence, based on the largest sample of S-U events collected by the experiment.
Cross sections (times decay BR into di-muons) and ratios.
Centrality dependence of the rations of J/PSI/DY and PSI(3685)/J/PSI production.