Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Study of Dimuon Production in Photon-Photon Collisions and Measurement of QED Photon Structure Functions at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 19 (2001) 15-28, 2001.
Inspire Record 539642 DOI 10.17182/hepdata.49854

Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.

3 data tables

The measured QED photon structure function at Q**2 = 12.5 GeV for the combine SAT and STIC data.

The measured QED photon structure function at Q**2 = 120 GeV for the combine SAT and STIC data.

Ratio of the structure functions FA and FB to F2.


Measurement of the QED longitudinal structure function of the photon using azimuthal correlations at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 49-55, 1997.
Inspire Record 426207 DOI 10.17182/hepdata.47704

We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.

1 data table

No description provided.


Measurement of the photon structure function F2(gamma) and jet production at TRISTAN

The TOPAZ collaboration Muramatsu, K. ; Hayashii, H. ; Noguchi, S. ; et al.
Phys.Lett.B 332 (1994) 477-487, 1994.
Inspire Record 373856 DOI 10.17182/hepdata.38377

We have measured the photon structure function F 2 γ in the reaction e + e − → e + e − hadrons for average Q 2 values from 5.1 to 338 GeV 2 by using data collected by the TOPAZ detector at TRISTAN. The data have been corrected for detector effects and are compared with theoretical expectations based on QCD. The structure function F 2 γ increases as ln Q 2 , as expected. A sample of events with one or two distinct jets has been identified in the final state. Although two-jet events can be explained solely by the point-like perturbative part, one-jet events require a significant hadron-like part in addition.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Production of Charmed Particles in 250-GeV mu+ - Iron Interactions

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Nucl.Phys.B 213 (1983) 31-64, 1983.
Inspire Record 180921 DOI 10.17182/hepdata.46965

Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.

9 data tables

The charm contribution to the nucleon structure function from the dimuon data.

No description provided.

No description provided.

More…