We searched for long-lived strange quark matter particles, so-called strangelets , and studied particle and antiparticle production in Pb + Pb collisions at 158 GeV/ c per nucleon at zero degree production angle. We give upper limits for the production of strangelets covering a mass to charge ratio up to 120 GeV/ c 2 and lifetimes t lab > 1.2 μ s and plot invariant differential production cross sections as a function of rapidity for a variety of particles.
No description provided.
Preliminary results from WA97 measurements on Λ, Ξ and Ω production in lead-lead and proton-lead collisions are presented, along with a comparison of WA97 proton-lead data with previous WA85 proton-tungsten results. The ratio Ω gX seems to be enhanced in lead initiated reactions compared to proton initiated reactions.
No description provided.
No description provided.
PRELIMINARI DATA.
None
No description provided.
The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.
The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.
The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
The spin-transfer parameter K n 00 n of the p p↑ → n ↑n charge exchange reaction has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR), at 875 MeV/ c p momentum, in the centre-of-mass scattering-angle range from 45° to 78°. To measure the transverse polarisation of the n 's, a thick scintillator counter hodoscope was used as live target, and the elastic n p scattering on the hydrogen of the scintillator was used as analysing reaction of the n transverse polarisation. Its so far unmeasured analysing power is taken as linear in momentum transfer, A n p = α·q , and results are given for α · K n 00 n . The values one obtains for K n 00 n , estimating α from N N potential models, are less than 0.25, in agreement with the predictions.
Polarized beam. CONST is overall normalization unknown factor.
No description provided.
Statistical error only.
No description provided.
No description provided.
From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be 〈 n ch 〉 = 23.84 ± 0.51 (stat) ± 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value α s (130 GeV) = 0.105 ± 0.003 (stat) ± 0.008 (syst).
No description provided.
None
The first sytematic error is due to the experimental uncertainties, whilst the second is due to the uncertainties in the quark charge separations.
The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.
No description provided.
No description provided.
No description provided.