About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.
No description provided.
We have measured the production of one and two large transverse momentum hadrons in p p and pp interactions in the range 2 < p T < 6 GeV/ c for the central rapidity region |y| < 0.9 at s = 63 and 31 GeV . No statistically significant difference between p p and pp collisions is observed. The results are in accordance with lowest order QCS perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark of quark-fusion subprocesses in this kinematic range.
No description provided.
No description provided.
Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.
Pseudorapidity density distribution for all charged multiplicities corrected for acceptance and backgrounds by excluding NSD events. Data have been read from the plot.
.
.
Inclusive ϕ-meson production has been measured for 100 GeV/cK−,\(\bar p\) andp incident on a Be target. Differential cross sectionsdσ/dxF anddσ/dp⊥2 are presented in the interval 0.075<xF<0.225 and 0<p⊥<1 GeV/c respectively. The shape of thedσ/dxF distributions agrees with predictions from a quark fusion model. Comparison with cross sections measured on a hydrogen target in the samexF andp⊥ range suggest a linearA-dependence fromA=1 toA=9.
No description provided.
With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.
MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.
MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.
THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.
The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2 θ w = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants u L 2 and L 2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.
No description provided.
No description provided.
We use low mass dimuons (0.35 < M μμ ⩽ 2 GeV/ c 2 ) to analyse the production at high transverse momentum ( P T ⩾ 2 GeV/ c ) of the resonances ϱ, ω, π. We have studied the variation of the cross section with the type of incident particle (π, K, p) at 150, 200, 280 GeV/ c and the nuclear effects by comparison of platinum and hydrogen targets. There is no significant difference between the slopes of the transverse momentum distributions with those observed at lower P T (0 < P T < 2 GeV/ c ), meanwhile x F -distributions show a leading effect in the production of gf by kaons at these relatively high transverse momenta.
No description provided.
No description provided.
No description provided.
Proton-antiproton and proton-proton elastic scattering have been measured in the four-momentum transfer range 0.001⩽| t |⩽0.06 GeV 2 for center-of-mass energy 52.8 GeV at the CERN Intersecting Storage Rings (ISR). Using the known pp total cross section, a simultaneous fit to the pp̄ and pp differential cross sections yields the pp̄ total cross section; in addition, we obtain the ratio of the real-to-imaginary part of the forward nuclear-scattering amplitude and the nuclear-slope parameter for both pp̄ and pp. Our results show conclusively that the pp̄ total cross section is rising at ISR energies and lend support to conventional theories in which the difference between the pp̄ and pp total cross section vanishes at very high energy.
No description provided.
RESULTS OF FIT.
No description provided.
We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .
Data read from graph.. Errors are the square roots of the number of events.
Data read from graph.. Errors are the square roots of the number of events.
Distributions of the Feynman x variable have been determined for positive and negative pions in charged current neutrino-proton and antineutrino-proton reactions with hadronic energy W > 3 GeV and Bjorken x B > 0.1. The distributions have been corrected for experimental effects such as measurement errors, uncertainties in estimating the neutrino energy and particle misidentification. In the framework of the quark-parton model, the distributions yield information about the fragmentation of forward going u and d quarks and backward going uu and ud diquarks. Approximate Feynman scaling is observed for the invariant Feynman x F distributions. They can be fitted by a power law of the form (1 − | x F |) n as suggested by the dimensional counting rules. Simple isospin relations predicted by the quark-parton model are fulfilled. The fragmentation of diquarks is compared with that of protons into π ± .
No description provided.
No description provided.