We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.
Missing transverse energy after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Missing transverse energy after requiring one muon with pT>20 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Transverse mass after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $\eta/y_{\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(\eta), v_2(p_T)$ and $v_2(\eta)$.
The event plane resolution measured using the TPC (second order) and using the BBC (first order) are shown as a function of collision centrality for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. Errors are statistical only.
Charged hadron $v_{1}${BBC} vs. $\eta$ for 0-60% centrality Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. The errors shown are statistical. Systematic errors are discussed in Section III.C. Results are compared to $v_{1}$ from 0-40% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV from the PHOBOS collaboration [10].
Comparison of the measured $v_{1}${BBC} as a function of η in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV with model predictions. The inset shows the central $\eta$ region in more detail. The errors are statistical only.
We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture.
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
Invariant mass distributions of jet pairs (dijets) produced in LHC proton-proton collisions at a centre-of-mass energy sqrt(s)=7 TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb^-1 recorded in 2011 by ATLAS. Dijet masses up to ~4 TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% CL for several new physics hypotheses: excited quarks are excluded for masses below 2.99 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.
The observed di-jet mass distribution together with the background QCD prediction.
This paper describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of about 31 pb^-1. Events from both W -> e nu and W -> mu nu are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for pTW < 300 GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.
The normalized, differential cross secton measured in the W to Electron decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton measured in the W to Muon decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton from the Muon and Electron decay channel Combined for the Born-level PT definition.
The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.
The DY spectrum normalized to the Z0 region and to the mass bin widths.
The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |eta| < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of sqrt(s_NN) = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point 'tracklets' and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < |eta| < 4.9. Measurements are presented of the per-event charged particle density distribution, dN_ch/deta, and the average charged particle multiplicity in the pseudorapidity interval |eta|<0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sqrt(s_NN) results. The shape of the dN_ch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 0-10, 10-20, 20-30 and 30-40 %.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 40-50, 50-60, 60-70 and 70-80 %.
Mean values of the charged particle multiplicities in the pseudorapidiy range -0.5-0.5 as a function of centrality. N(C=PART), the number of participating nucleons in the collision, is also shown, determined from the muliplicity and ET of the event, with which it has been shown to be strongly correlated.
The ratio of production cross sections of the W and Z bosons with exactly one associated jet is presented as a function of jet transverse momentum threshold. The measurement has been designed to maximise cancellation of experimental and theoretical uncertainties, and is reported both within a particle-level kinematic range corresponding to the detector acceptance and as a total cross-section ratio. Results are obtained with the ATLAS detector at the LHC in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of 33 pb^-1. The results are compared with perturbative leading-order, leading-log, and next-to-leading-order QCD predictions, and are found to agree within experimental and theoretical uncertainties. The ratio is measured for events with a single jet with p_T > 30 GeV to be 8.73 +/- 0.30 (stat) +/- 0.40 (syst) in the electron channel, and $ 8.49 +/- 0.23 (stat) +/- 0.33 (syst) in the muon channel.
The ratio of W to Z production corrected to full phase space for the two channels combined.
The ratios of W to Z production in the fiducial region for the individual lepton channels and for the channels combined.
A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.
The measured prompt photon production spectra in the two |eta| regions, 0.0-0.9 and 0.9-1.44.
The measured prompt photon production spectra in the two |eta| regions, 1.57-2.1 and 2.1-2.5.