Date

Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 020, 2023.
Inspire Record 2152227 DOI 10.17182/hepdata.129875

A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.

46 data tables

Distribution of ST in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the leading jet’s DEEPAK8 light quark or gluon score in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.

More…

Measurement of the top-quark mass using a leptonic invariant mass in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 019, 2023.
Inspire Record 2145514 DOI 10.17182/hepdata.91999

A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.

4 data tables

Top mass measurement result.

List of all the individual sources of systematic uncertainty considered in the analysis. The individual sources, each corresponding to an independent nuisance parameter in the fit, are grouped into categories, as indicated in the first column. The second column shows the impact of each of the individual sources on the measurement, obtained as the shift on the top mass induced by a positive shift of the each of the nuisance parameters by its post-fit uncertainty. Sources for which no impact is indicated are neglected in the fit procedure as their impact on the total prediction is negligible in any of the bins. The last column shows the statistical uncertainty in each of the reported numbers as estimated with the bootstrap method.

Ranking, from top to bottom, of the main systematic uncertainties (excluding recoil) showing the pulls and the impact of the systematic uncertainties on the top mass, from the combined opposite sign (OS) and same sign (SS) binned-template profile likelihood fit to data. The OS or SS refers to the charge signs of the primary lepton and the soft muon. The gamma parameters are NPs used to describe the effect of the limited statistics of the sample.

More…

Measurement of electroweak $Z(\nu\bar{\nu})\gamma jj$ production and limits on anomalous quartic gauge couplings in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 082, 2023.
Inspire Record 2142343 DOI 10.17182/hepdata.127924

The electroweak production of $Z(\nu\bar{\nu})\gamma$ in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial $Z(\nu\bar{\nu})\gamma jj$ cross section for electroweak production is measured to be 0.77$^{+0.34}_{-0.30}$ fb and is consistent with the Standard Model prediction. Evidence of electroweak $Z(\nu\bar{\nu})\gamma jj$ production is found with an observed significance of 3.2$\sigma$ for the background-only hypothesis, compared with an expected significance of 3.7$\sigma$. The combination of this result with the previously published ATLAS observation of electroweak $Z(\nu\bar{\nu})\gamma jj$ production yields an observed (expected) signal significance of 6.3$\sigma$ (6.6$\sigma$). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.

21 data tables

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_s$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ EWK process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_{s}$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ QCD process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

The $m_{jj}$ distributions for the CRs and the BDT classifier response distribution for the SR after the fit in all regions. The dashed line shows the total background distribution before the fit. The vertical error bars on the data points correspond to the data's statistical uncertainty. Overflows are included in the last bin. The uncertainty band corresponds to the combination of the MC statistical uncertainty and systematic uncertainties obtained in the fit.

More…

Version 2
Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 091, 2023.
Inspire Record 2142341 DOI 10.17182/hepdata.132906

The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The inclusive fiducial cross section is measured to be $\sigma_\mathrm{fid}$ = 73.4 $_{-5.3}^{+5.4}$ (stat) ${}_{-2.2}^{+2.4}$ (syst) fb, in agreement with the standard model expectation of 75.4 $\pm$ 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.

116 data tables

Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width

Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width

Correlation between the measured fiducial cross sections in the different bins of $p_{\mathrm{T}}^{\gamma\gamma}$

More…

Version 2
Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of $\tau$-leptons in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 155, 2023.
Inspire Record 2141572 DOI 10.17182/hepdata.130958

A search for flavour-changing neutral current (FCNC) $tqH$ interactions involving a top quark, another up-type quark ($q=u$, $c$), and a Standard Model (SM) Higgs boson decaying into a $\tau$-lepton pair ($H\rightarrow \tau^+\tau^-$) is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV that corresponds to an integrated luminosity of 139 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson ($pp\rightarrow tH$), and top quark pair production in which one of the top quarks decays into $Wb$ and the other decays into $qH$ through the FCNC interactions. The search selects events with two hadronically decaying $\tau$-lepton candidates ($\tau_{\text{had}}$) or at least one $\tau_{\text{had}}$ with an additional lepton ($e$, $\mu$), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3$\sigma$ above the expected SM background, and 95% CL upper limits on the $t\to qH$ branching ratios are derived. The observed (expected) 95% CL upper limits set on the $t\to cH$ and $t\to uH$ branching ratios are $9.4 \times 10^{-4}$ $(4.8^{+2.2}_{-1.4}\times 10^{-4})$ and $6.9\times 10^{-4}$ $(3.5^{+1.5}_{-1.0}\times 10^{-4})$, respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective $tqH$ couplings are $C_{c\phi} <1.35$ $(0.97)$ and $C_{u\phi} <1.16$ $(0.82)$.

54 data tables

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$ region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-1j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

More…

Version 2
Searches for exclusive Higgs and $Z$ boson decays into a vector quarkonium state and a photon using $139$ fb$^{-1}$ of ATLAS $\sqrt{s}=13$ TeV proton$-$proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 781, 2023.
Inspire Record 2132750 DOI 10.17182/hepdata.132657

Searches for the exclusive decays of Higgs and $Z$ bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^- \gamma$ final state with a proton$-$proton collision data sample corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% confidence-level upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S,2S,3S) \gamma$ are found to be $2.0\times10^{-4}$, $10.5\times10^{-4}$, and $(2.5,4.2,3.4)\times10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL upper limits on the branching fractions of the $Z$ boson decays are $1.2\times10^{-6}$, $2.4\times10^{-6}$, and $(1.1,1.3,2.4)\times10^{-6}$. An observed 95% CL interval of $(-133,175)$ is obtained for the $\kappa_c/\kappa_\gamma$ ratio of Higgs boson coupling modifiers, and a 95% CL interval of $(-37,40)$ is obtained for $\kappa_b/\kappa_\gamma$.

2 data tables

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Expected, with the corresponding $\pm 1\sigma$ intervals, and observed 95% CL branching fraction upper limits for the Higgs and $Z$ boson decays into a quarkonium state and a photon. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross section times branching fraction $\sigma\times\mathcal{B}$ are also shown.


Searches for additional Higgs bosons and for vector leptoquarks in $\tau\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 073, 2023.
Inspire Record 2132368 DOI 10.17182/hepdata.128147

Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.

313 data tables

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.

More…

Version 2
Search for $CP$ violation in ttH and tH production in multilepton channels in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 092, 2023.
Inspire Record 2132369 DOI 10.17182/hepdata.131043

The charge-parity ($CP$) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the $\mathrm{t\bar{t}}$ and tH associated production, using 138 fb$^{-1}$ of data collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H $\to$ WW or H $\to$$\tau\tau$ and the top quarks decay via t $\to$ Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of $CP$-even from $CP$-odd scenarios. Two-dimensional confidence regions are set on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, which are respectively defined as the $CP$-even and $CP$-odd top-Higgs Yukawa coupling modifiers. No significant fractional $CP$-odd contributions, parameterized by the quantity $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ are observed; the parameter is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H $\to$ ZZ and H $\to$ $\gamma\gamma$ decay modes, yielding two- and one-dimensional confidence regions on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, while $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.28 with an interval of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ $\lt$ 0.55 at 68% confidence level, in agreement with the standard model $CP$-even prediction of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.

30 data tables

M_ttH which is one of the input variables to the XGBoost used for CP discrimination in 2lss + 0tau channel, defined in table 4.

M_ttH which is one of the input variables to the XGBoost used for CP discrimination in 2lss + 0tau channel, defined in table 4.

\Delta \eta_{B-B}, which is one of the input variables to the XGBoost used for CP discrimination in 2lss + 0tau channel, defined in table 4.

More…

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 59 (2023) 80, 2023.
Inspire Record 2132332 DOI 10.17182/hepdata.152804

High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.

35 data tables

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The flow coefficients $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ (from top to bottom panels) of protons, deuterons and tritons (from left to right panels) in semi-central ($20 - 30 \%$) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV as a function of the centre-of-mass rapidity $y_{cm}$ in transverse momentum intervals of $50$ MeV$/c$ width. Systematic uncertainties are displayed as boxes. Lines are to guide the eye.

More…