Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.
Magnetic form factors.
Electric form factors.
The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.
Magnetic form factors.
Electric form factors.
Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.
The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.
Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).
Cross sections for 180° inelastic electron scattering from deuterium were measured from breakup threshold to beyond the quasielastic peak for incident-beam energies of 0.843, 1.020, 1.189, and 1.281 GeV, corresponding to 0.75≤Q2≤2.57 (GeV/c)2. The data are in reasonable agreement with nonrelativistic models that include final-state interactions and meson-exchange currents. The scaling function F(y) for these data is generally in agreement with F(y) for forward-angle data at the same Q2. Values of GMn determined from the data are in good agreement with results from previous experiments.
Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).
Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).
Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).
The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.
No description provided.
Formfactor scaling assumes (Ge=Gm/mu).
At a square of the momentum transfer of 1.0 (GeV/c)2 the elastic scattering of electrons on deuterons has been measured at electron scattering angles of 8°, 60°, and 82°. From these data we have extracted a value of B(q2)=(0.59±1.20)×10−5 for the deuteron. This measurements extends the range in momentum transfer by almost a factor of 2 over the previous measurements.
No description provided.
No description provided.
We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.
No description provided.
No description provided.
No description provided.
The elastic electron-neutron cross section has been measured at four-momentum transfers squared (Q2) of 2.5, 4.0, 6.0, 8.0, and 10.0 (GeV/c)2 with use of a deuterium target and detection of the scattered electrons at 10°. The ratio of neutron to proton elastic cross sections decreases with Q2. At high Q2 this trend is inconsistent with the dipole law, form-factor scaling, and many vector dominance models, although it is consistent with some parton models.
No description provided.
None
No description provided.
No description provided.
No description provided.