Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{−1}$. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model.
Differential cross section measurements in bins of mass4l (v3)
Differential cross section measurements in bins of mass4l_zzfloating (v3)
Differential cross section measurements in bins of njets_pt30_eta4p7 (v3)
Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.
The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.
Single differential cross section DSIG/DM.
Single differential cross section DSIG/DPT.
Single differential cross section DSIG/DPHI.
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in pp-bar collisions at a center-of-mass energy sqrt(s)=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb-1. Azimuthal correlations are stronger at larger transverse momenta. These are well-described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where soft effects are significant.
Distribution for the maxPT jet from 75 to 100 GeV.
Distribution for the maxPT jet from 100 to 130 GeV.
Distribution for the maxPT jet from 130 to 180 GeV.