Measurement of the top-quark mass using a leptonic invariant mass in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 019, 2023.
Inspire Record 2145514 DOI 10.17182/hepdata.91999

A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.

4 data tables

Top mass measurement result.

List of all the individual sources of systematic uncertainty considered in the analysis. The individual sources, each corresponding to an independent nuisance parameter in the fit, are grouped into categories, as indicated in the first column. The second column shows the impact of each of the individual sources on the measurement, obtained as the shift on the top mass induced by a positive shift of the each of the nuisance parameters by its post-fit uncertainty. Sources for which no impact is indicated are neglected in the fit procedure as their impact on the total prediction is negligible in any of the bins. The last column shows the statistical uncertainty in each of the reported numbers as estimated with the bootstrap method.

Ranking, from top to bottom, of the main systematic uncertainties (excluding recoil) showing the pulls and the impact of the systematic uncertainties on the top mass, from the combined opposite sign (OS) and same sign (SS) binned-template profile likelihood fit to data. The OS or SS refers to the charge signs of the primary lepton and the soft muon. The gamma parameters are NPs used to describe the effect of the limited statistics of the sample.

More…

Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Afanasiev, S. ; et al.
Phys.Rev.C 102 (2020) 054910, 2020.
Inspire Record 1798493 DOI 10.17182/hepdata.101752

We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.

14 data tables

Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.

More…

Creating small circular, elliptical, and triangular droplets of quark-gluon plasma

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Nature Phys. 15 (2019) 214-220, 2019.
Inspire Record 1672133 DOI 10.17182/hepdata.99787

The experimental study of the collisions of heavy nuclei at relativistic energies has established the properties of the quark-gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons. In this state, matter behaves as a nearly inviscid fluid that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the produced particles, producing a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton-proton ($p$$+$$p$) and proton-nucleus ($p$$+$$A$) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here, we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton-gold ($p$$+$Au), deuteron-gold ($d$$+$Au), and helium-gold ($^3$He$+$Au) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_{NN}}}$~=~200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide a simultaneous description of these measurements.

16 data tables

$v_2$for 0-5% central p+Au collisions

$v_2$for 0-5% central d+Au collisions

$v_2$for 0-5% central $^3$He+Au collisions

More…

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

36 data tables

J/psi invariant yields in p+p collisions as a function of pT at forward and backward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al, p+Au and 3He+Au collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

11 data tables

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.

RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.

More…

Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

4 data tables

Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding

More…

Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2618188 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb−1. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

26 data tables

Product of signal selection efficiency and acceptance as a function of resonance mass for a SSM WPRIME decaying to electron or muon plus neutrino.It is calculated as the number of WPRIME signal events passing the selection process over the number of generated events. In the selection process there is no requirement on a minimum $M_T$ applied. The SSM WPRIME signal samples have been generated with PYTHIA 8.2. More details in paper

Observed and expected number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for selected values of $M_T$ thresholds. The statistical and systematic uncertainties are added in quadrature providing the total uncertainty.

Observed and expected-from-SM number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for two steps in the selection procedure: 1) one high-quality high-$p_T$ lepton with $p_T$ > 240(53) GeV for E(MU), and no other lepton in the event, with $M_T$ > 400(120) GeV for events with E(MU). 2) additionally the ratio of the lepton $p_T$ and $p_T^{miss}$ must be 0.4 < $p_T$/$p_T^{miss}$ < 1.5 and the azimuthal angular difference between them, ${\Delta\phi}$> 2.5. The signal yield for an SSM WPRIME of mass 5.6 TeV is also included.

More…

Precise determination of the B0s-B0sbar oscillation frequency

The LHCb collaboration Aaij, R. ; Beteta, C. Abellán ; Ackernley, T. ; et al.
Nature Phys. 18 (2022) 1-5, 2022.
Inspire Record 1857623 DOI 10.17182/hepdata.105881

Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.

1 data table

Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.


Transverse single-spin asymmetries of midrapidity $\pi^0$ and $\eta$ mesons in polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 052009, 2021.
Inspire Record 1833997 DOI 10.17182/hepdata.105043

We present a measurement of the transverse single-spin asymmetry for $\pi^0$ and $\eta$ mesons in $p^\uparrow$ $+$ $p$ collisions in the pseudorapidity range $|\eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $\pi^0$ and $\eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.

2 data tables

Data from Figs. 2, 4, and 5 of the transverse single-spin asymmetry of neutral pions measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $1.06\times10^{-4}$ from bunch shuffling.

Data from Figs. 3 and 4 of the transverse single-spin asymmetry of eta mesons measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $6.20\times10^{-4}$ from bunch shuffling.


Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

25 data tables

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 10% to 20% centrality $Au+Au$.

More…