A Limit on muon-neutrino (anti-muon-neutrino) ---> tau-neutrino (anti-tau-neutrino) oscillations from a precision measurement of neutrino - nucleon neutral current interactions

McFarland, Kevin Scott ; Naples, D. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 75 (1995) 3993-3996, 1995.
Inspire Record 396286 DOI 10.17182/hepdata.42343

We present a limit on $\nu_\mu(\overline{\nu}_\mu)\to\nu_\tau(\overline{\nu}_\tau)$ oscillations based on a study of inclusive $\nu N$ interactions performed using the CCFR massive coarse grained detector in the FNAL Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of $\nu_\mu N$ versus $\nu_\tau N$ charged current interactions. The $\nu_\mu$ energies ranged from $30$ to $500$GeV with a mean of $140$GeV. The minimum and maximum $\nu_\mu$ flight lengths are $0.9$km and $1.4$km respectively. The lowest $90\%$ confidence upper limit in $\sin~22\alpha$ of $2.7\times 10~{-3}$ is obtained at $\Delta m~2\sim50$eV$~2$. This result is the most stringent limit to date for $25<\Delta m~2<90$eV$~2$.

2 data tables match query

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUTAU oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.


A high statistics search for nu/mu (anti-nu/mu) --> nu/e (anti-nu/e) oscillations in the small mixing angle regime.

The CCFR/NuTeV collaboration Romosan, A. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 78 (1997) 2912-2915, 1997.
Inspire Record 426120 DOI 10.17182/hepdata.41667

Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.

2 data tables match query

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

No description provided.


A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

3 data tables match query

No description provided.

Total GLS integral and ALPHAS for each bin in Q2. Systematic errors are correlated in different Q2 bins. The second DSYS error in ALPHAS is due to the uncertainty in the theory.

ALPHAS extrapolated to the Z0 mass. The second DSYS error is due to the uncertainty in the theory.


A first measurement of low x low Q**2 structure functions in neutrino scattering.

The CCFR & NuTeV collaborations Fleming, Bonnie T. ; Adams, T. ; Alton, A. ; et al.
Phys.Rev.Lett. 86 (2001) 5430-5433, 2001.
Inspire Record 537572 DOI 10.17182/hepdata.19408

A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.

0 data tables match query

Improved determination of alpha(s) from neutrino nucleon scattering.

Seligman, W.G. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 79 (1997) 1213-1216, 1997.
Inspire Record 448914 DOI 10.17182/hepdata.37289

We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.

0 data tables match query

Inclusive transverse momentum distributions of charged particles in diffractive and nondiffractive photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 67 (1995) 227-238, 1995.
Inspire Record 392037 DOI 10.17182/hepdata.44775

Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range $-1.2<\eta<1.4$ have been measured up to $p_{T}=8\GeV $ using the ZEUS detector. Diffractive and non--diffractive reactions have been selected with an average $\gamma p$ centre of mass (c.m.) energy of $\langle W \rangle = 180\GeV$. For diffractive reactions, the $p_{T}$ spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values $\langle M_{X} \rangle = 5$ GeV and $10$ GeV. The inclusive transverse momentum spectra fall exponentially in the low $p_{T}$ region. The non--diffractive data show a pronounced high $p_{T}$ tail departing from the exponential shape. The $p_{T}$ distributions are compared to lower energy photoproduction data and to hadron--hadron collisions at a similar c.m. energy. The data are also compared to the results of a next--to--leading order QCD calculation.

3 data tables match query

Rate of charged particle production in an average non-diffractive event.

Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 5 GeV.

Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 10 GeV.


A Determination of electroweak parameters from Z0 decays into charged leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 250 (1990) 183-192, 1990.
Inspire Record 299253 DOI 10.17182/hepdata.29552

We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .

5 data tables match query

Cross section from 1990 data.

Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).

Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $&lt; p_{T}^{\mathrm{D^*}} &lt; 5 $ GeV and $\mathrm{|\eta^{D^*}|} &lt; 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables match query

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

2 data tables match query

R and L refer to Right and Left handed beam polarization.

Effective weak mixing angle.


Inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 535 (2002) 59-69, 2002.
Inspire Record 585623 DOI 10.17182/hepdata.54885

Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV &lt; P_T &lt; 12 GeV and |eta| &lt; 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

4 data tables match query

Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.

Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.

The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.

More…