Date

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

4 data tables

Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

More…

Jet structure of baryon excess in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 051902, 2005.
Inspire Record 656142 DOI 10.17182/hepdata.142148

Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.

19 data tables

$\Delta\phi$ distributions for meson and baryon triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ for five centralities in Au+Au collisions.

$\Delta\phi$ distributions for meson triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $d$+Au collisions.

$\Delta\phi$ distributions unidentified triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $p$+$p$ collisions.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

Measurements of transverse energy distributions in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 054907, 2004.
Inspire Record 653797 DOI 10.17182/hepdata.98621

Transverse energy ($E_T$) distributions have been measured for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV by the STAR collaboration at RHIC. $E_T$ is constructed from its hadronic and electromagnetic components, which have been measured separately. $E_T$ production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of $E_T$ per charged particle agrees well with measurements at lower collision energy, indicating that the growth in $E_T$ for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total $E_T$ is consistent with a final state dominated by mesons and independent of centrality.

16 data tables

Typical MIP spectrum. The hits correspond to isolated tracks with p > 1.25 GeV/c which project to EMC towers. The peak corresponds to the energy deposited by non-showering hadrons (MIP peak).

$p/E_{tower}$ spectrum for electron candidates, selected through $dE/dx$ from the TPC, with 1.5 < p < 5.0 GeV/c. A well defined electron peak is observed. The dashed line corresponds to the hadronic background in the $dE/dx$-identified electron sample.

Upper plot: points are measured $p/E_{tower}$ electron peak position as a function of the distance to the center of the tower. The solid line is from a calculation based on a full GEANT simulation of the detector response to electrons. Lower plot: points show measured energy deposited by electrons in the tower as a function of the momentum for distances to the center of the tower smaller than 2.0 cm. The first point is the electron equivalent energy of the minimum ionizing particles. The solid line is a second order polynomial fit of the data.

More…

Transverse-momentum dependent modification of dynamic texture in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 031901, 2005.
Inspire Record 653628 DOI 10.17182/hepdata.102943

Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (|eta| < 1) and azimuth (full 2 pi) in bins of transverse momentum (p_t) from 0.14 < p_t < 2.1 GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to mini-jet fragmentation is observed. It evolves with collision centrality and p_t in a way not seen before which suggests strong dissipation of minijet fragmentation in the longitudinally-expanding medium.

10 data tables

Normalized dynamic texture for fineness scale m = 0

Normalized dynamic texture for fineness scale m = 1

Normalized dynamic texture for fineness scale m = 0

More…

Azimuthal anisotropy and correlations at large transverse momenta in p + p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 93 (2004) 252301, 2004.
Inspire Record 654226 DOI 10.17182/hepdata.100594

Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at $\sqrt{s_{_{NN}}}$= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in $p+p$ at the same energy. Elliptic anisotropy, $v_2$, is found to reach its maximum at $p_t \sim 3$ GeV/c, then decrease slowly and remain significant up to $p_t\approx 7$ -- 10 GeV/c. Stronger suppression is found in the back-to-back high-$p_t$ particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of $v_2$ at intermediate $p_t$ is compared to simple models based on jet quenching.

5 data tables

Azimuthal correlations in Au+Au col- lisions (squares) as a function of centrality (peripheral to cen- tral from left to right) compared to minimum bias azimuthal correlations in p + p collisions (circles). Errors are statistical only.

$v_{2}$ of charged particles as a function of transverse momentum from the two-particle cumu- lant method (triangles) and four-particle cumulant method (stars). Open circles show the 2-particle correlation results after subtracting the correlations measured in p + p collisions. Only statistical errors are shown.

Upper panel, Azimuthal distributions of associated particles for trigger particles in-plane (squares) and out-of-plane (triangles) for Au+Au collisions at centrality 20-60%. Open symbols are reflections of solid symbols around $\Delta \phi$ = 0 and $\Delta \phi$ = $\pi$. Elliptic flow contribution is shown by dashed lines. Lower panel, Distributions after substracting elliptic flow, and the corresponding measurement in p + p collisions (histogram).

More…

Phi meson production in Au + Au and p + p collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 612 (2005) 181-189, 2005.
Inspire Record 651461 DOI 10.17182/hepdata.99154

We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.

3 data tables

Transverse mass distributions for $\phi$ meson from Au+Au (circles) and p+p (squares) collisions at 200 GeV. For clarity, some Au+Au distributions for different centralities are scaled by factors. The top 5% data are obtained from the central trigger data set. All other distributions are obtained from the minimum-bias data set. Dashed lines represent the exponential fits to the distributions and the dotted-dashed line is the result of a double-exponential fit to the distribution from p+p collisions. Error bars are statistical errors only. (x500), (x30), etc. in plot refers to the scaling of data for clearer visual results.

Results of $\phi$ meson inverse slope parameter, $<p_T>$, and dN/dy from NSD p+p and Au+Au collisions at RHIC. All values are for |y| < 0.5. Systematic uncertainties: for Au, 11% on both dN/dy and $<p_T>$. For p+p, 15% on dN/dy and 5% on $<p_T>$.

$R_{CP}$ (a): The ratio of central (top 5%) over peripheral (60-80%) ($R_{CP}$) normalized by $<N_{bin}>$. The ratios for the $\Lambda$ and $K_S^0$, shown by dotted-dashed and dashed lines, are taken from [13]; $R_{AA}$ (b) and (c) are the ratios of central Au + Au (top 5%) to p + p and peripheral Au + Au (60-80%) to p + p, respectively. The values of $R_{AA}$ for charged hadrons are shown as open circles [25]. The width of the gray bands represent the uncertainties in the estimation of $<N_{bin}>$ summed in quadrature with the normalization uncertainties of the spectra. Errors on the $\phi$ data points are the statistical plus 15% systematic errors. Overall normalization errors from binary scaling are listed in the header of each column.


Hadronization geometry and charge-dependent number autocorrelations on axial momentum space in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 634 (2006) 347-355, 2006.
Inspire Record 653486 DOI 10.17182/hepdata.102088

We present the first measurements of charge-dependent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.

6 data tables

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\eta_{1},\eta_{2})$.

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\phi_{1},\phi_{2})$.

Two-particle CD joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

More…

Deuteron and antideuteron production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 122302, 2005.
Inspire Record 651462 DOI 10.17182/hepdata.141740

The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.

4 data tables

Corrected spectra for deuterons and anti-deuterons for different centralities are plotted vs $m_T$.

Corrected spectra for deuterons and anti-deuterons for different centralities are plotted vs $m_T$.

Coalescence parameter $B_2$ vs $p_T$ for deuterons (left panel) and anti-deuterons (right panel). Grey bands indicate the systematic errors. Values are plotted at the "true" mean value of $p_T$ of each bin, the extent of which is indicated by the width of the grey bars along x-axis.

More…

Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5-GeV and 3-GeV.

The CLAS collaboration Mirazita, M. ; Ronchetti, F. ; Rossi, P. ; et al.
Phys.Rev.C 70 (2004) 014005, 2004.
Inspire Record 650821 DOI 10.17182/hepdata.31633

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.

4 data tables

Angular distributions of the photodisintegration cross section for angle between 10 and 50 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 50 and 90 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 90 and 130 degrees in the CM.

More…