The fermilab high-energy photoproduction experiment E687 provides a sample of approximately 90 events of the decay mode D + s → φμ + ν . The ratios of the form factors governing the decay are measured to be R v =1.8±0.9±0.2 and R 2 = 1.1±0.8±0.1, implying a polarization of Г 1 /Г t = 1.0±0.5±0.1 for the electron decay, consistent with our measurement of the form factor for the decay D + → K ∗0 μ + ν .
With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.
No description provided.
We present a precise measurement of the neutron magnetic form factor G mn at low momentum transfer ( q = 1.69 fm −1 ). From a simultaneous measurement of D ( e , e ′ n ) and D ( e , e ′ p ) we obtain the ratio of neutron and proton cross sections. The neutron detection efficiency is obtained from a separate measurement using tagged neutrons produced by H ( n , p ) n scattering of a monochromatic neutron beam. In contrast to previous determinations of G mn , the present value is insensitive to the systematic uncertainties in the interpretation of the data in terms of G mn and represents a determination of G mn to ±1.7%.
Using kinematics I.
Using kinematics II.
Using kinematics I. SD is simple dipole model.
Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
None
No description provided.
Annihilation cross-sections σann for antineutrons on some nuclei (C, Al, Cu, Sn and Pb) at three antineutron momenta (180, 240 and 280 MeV/c) were measured at LEAR (CERN) with the OBELIX spectrometer. A behaviour σann=σ0Aν has been found withν≈2/3. The data are discussed following some models for antineutron-nucleus interaction.
No description provided.
No description provided.
No description provided.
We have studied single photon production in e + e − annihilation based on a data sample corresponding to an integrated luminosity of 164.1 pb −1 at s =58 GeV . The single photon yield is consistent with the prediction of the standard model with three light neutrino species. No anomalous signal has been observed. From this result left- and right-handed scalar electrons in the mass degenerate case are excluded at 90% CL below 44.4 GeV/ c 2 for the massless photino.
No description provided.
None
No description provided.
NET BARYON DENSITY D(N)/D(Y) HAS BEEN DETERMINED AT THE RAPIDITY OF NN C.M.S., FOR NET BARYON THE FORMULAR: 2*(P-PBAR)+1.6*(LAMBDA- LAMBDABAR) HAS BEEN USED.
No description provided.
The cross section of the charged current process e − p → v e + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.
No description provided.