The polarization of Lambda, Anti-Lambda, Xi, and Anti-Xi hyperons along the angular momentum of the system has been measured in isobar collisions of Ru+Ru and Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV with the STAR detector at RHIC. The polarization dependence on collision centrality is explored and found to show an increasing trend in more peripheral collisions. Dependencies on transverse momentum and pseudorapidity are investigated for Lambda and Anti-Lambda hyperons, but no significant dependence has been observed. The polarization measurements for Lambda and Anti-Lambda are consistent with each other, indicating little contribution of the spin-magnetic coupling in the observed polarization. The results for Lambda hyperons measurements are qualitatively consistent with hydrodynamic calculations incorporating effects from shear-induced polarization and thermal vorticity, and show no obvious system size dependence in comparison with previous results in Au+Au collisions. For the first time, the dependence of the polarization on the hyperon's emission azimuthal angle with respect to the second harmonic event plane is extracted and shows stronger polarization for the in-plane emitted hyperons at the level of 2.4$\sigma$ significance in 20-50% centrality. The measurements of Xi hyperons polarization via the polarization transfer analysis exhibit a finite positive polarization, 2.9$\sigma$ significance in 20-50% centrality, slightly enhanced compared to the inclusive Lambda polarization.
Resolutions of the first-order event plane from the ZDC-SMDs as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Resolutions of the second-order event plane from the TPC as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Global polarization of $\Lambda$ and $\bar\Lambda$ and their difference as a function of centrality in combined Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.