Final data measured with the EMC forward spectrometer are presented on the production of forward charged hadrons in μp and μd scattering at incident beam energies between 100 and 280 GeV. The large statistic of 373 000 events allows a study of the semi-inclusive hadron production as a function ofz,pT2 and 〈pT2〉 in smallQ2,xBj andW bins. Charge multiplicity ratios and differences as a function ofz andxBj are given forp, d andn-targets. From the differences of charge multiplicities the ratio of the valence quark distributions of the protondv(x)/uv(x) is determined for the first time in charged lepton scattering. The Gronau et al. sum rule is tested, the measured sum being 0.31±0.06 stat. ±0.05 syst., compared with the theoretical expectation of 2/7≈0.286. The measured sum corresponds to an absolute value of the ratio of thed andu quark charge of 0.44±0.10 stat.±0.08 syst.
No description provided.
No description provided.
No description provided.
We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035<x<0.65 and 0.5<Q2<90 GeV2 is covered. At lowx the three ratios are significantly smaller than unity and the size of the depletion grows with decreasingx and increasing mass numberA. At intermediatex the ratios show an enhancement of about 2% above unity for C/D and Ca/D, possibly less for He/D. There are indications of someQ2 dependence in the Ca/D data. The integrals of the structure function differencesF2A−F2D are discussed.
No description provided.
No description provided.
No description provided.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.
No description provided.
The ratio of the structure function F 2 n / F 2 p ( x ) has been measured in deep inelastic scattering of 274 GeV muons on hydrogen and deuterium targets exposed simultaneously to the beam. The results were obtained from 0.3 (0.6) million events from hydrogen (deuterium) in the range 0.004 < x < 0.8 and 1 < Q 2 < 190 GeV 2 . At x < 0.25 both the statistical and the systematic error is below 2%. Implications for parton distributions and for the σ w / σ z production cross section ratio in p p collisions are discussed. When compared to other results obtained at lower energies, the data indicate a Q 2 dependence of the ratio.
No description provided.
Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured in the range 0.01<×<0.7. The spin dependent structure function g 1 ( x ) for the proton has been determined and, combining the data with earlier SLAC measurements, its integral over x found to be 0.126±0.010(stat.)±0.015(syst.), in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Biorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These integrals lead to the conclusion, in the naïve quark parton model, that the total quark spin constitutes a rather small fraction of the spin of the nucleon. Results are also presented on the asymmetries in inclusive hadron production which are consistent with the above picture.
THE MEAN Q**2 FOR EACH OF THE 10 VALUES OF X BELOW ARE 3.5,4.5,6.0, 8.010.3,12.9,15.2,18.0,22.5,29.5.
No description provided.
No description provided.
We have found 122 charmed-particle decays among 3855 neutrino interactions located in the fiducial volume of a hybrid emulsion spectrometer installed in the Fermilab wide-band neutrino beam. We obtain an average relative charmed-particle production cross section of σ(ν μ → c μ − ) σ(ν μ →μ − ) =4.9 −0.6 +0.7 % , at an average neutrino energy of 22 GeV. We also obtain a production rate of σ(ν μ → c c ν μ ) σ(ν μ →ν μ ) =0.13 −0.11 +0.31 % , if we assume that there was an undetected muon, a limit of σ(ν μ → c c μ − ) σ(ν μ → c μ − )<3% (90% CL ) can be obtained. Other cross section ratios and limits are also presented.
No description provided.
No description provided.
No description provided.
Results are presented on the ratios of the deep inelastic muon-nucleus cross sections for carbon, copper and tin nuclei to those measured on deuterium. The data confirm that the structure functions of the nucleon measured in nuclei are different from those measured on quasi-free nucleons in deuterium. The kinematic range of the data is such that 〈 Q 2 〉 ∼ 5 GeV 2 at x ∼ 0.03, increasing to 〈 Q 2 〉 ∼ 35 GeV 2 for x ∼ 0.65. The measured cross section ratios are less than unity for x ≲ 0.05 and for 0.25 ≲ x < 0.7. The decrease of the ratio below unity for low x becomes larger as A increases as might be expected from nuclear shadowing. However, this occurs at relatively large values of Q 2 (∼ 5 GeV 2 ) indicating that such shadowing is of patrionic origin.
Q**2= 5.1,7.8,11.4,14.4,17.3,20.2,24.1,29.8,33.6 GEV**2.
Q**2= 4.4,8.4,13.5,17.9,21.1,24.4,29.5,34.0,40.4 GEV**2.
Q**2= 4.0,7.7,11.1,14.6,17.1,19.8,24.8,32.4 GEV**2.
The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01< x <0.7). The spin-dependent structure function g 1 ( x ) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.
THE AVERAGE VALUES OF Q**2 IN EACH X-BIN ARE AS FOLLOWS: X=0.015,Q2=3.5: X=0.025,Q2=4.5: X=0.035,Q2=6.0: X=0.050,Q2=8.0: X=0.078,Q2=10.3: X=0.124,Q2=12.9: X=0.175,Q2=15.2: X=0.248,Q2=18.0: X=0.344,Q2=22.5: X=0.466,Q2=29.5.
The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.