Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.
Total integrated cross section in the given kinematic range. The (sys) error includes the uncertainty in the branching fraction.
Measured differential cross section as a function of the transverse momentum of the B+ particle.
Measured differential cross section as a function of the rapidity of the B+ particle.
The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.
Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.0-0.3 from the lifetime-based analysis.
Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.3-0.8 from the lifetime-based analysis.
Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.8-1.2 from the lifetime-based analysis.
Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.
The measured values of the PTIN distribution.
The measured values of the PTOUT distribution.
The measured values of the rapidity, YRAP, distribution.
None
Inclusive charged particle distribution as a function of XP.
Inclusive charged particle distribution as a function of rapidity (YRAP).
Inclusive charged particle distribution as a function of PT in the event plane.
Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.
No description provided.
No description provided.
No description provided.