Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ < $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ > $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ > $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ < $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ > $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ > $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.
Folded electron charged asymmetry.
Using data from Fermilab fixed-target experiment E769, we have measured particle-antiparticle production asymmetries for Lambda0 hyperons in 250 GeV/c pi+-, K+- and p -- nucleon interactions. The asymmetries are measured as functions of Feynman-x (x_F) and p_t^2 over the ranges -0.12<=x_F<=0.12 and 0<=p_t^2<=3 (GeV/c)^2 (for positive beam) and -0.12<=x_F<=0.4 and 0<=p_t^2<=10 (GeV/c)^2 (for negative beam). We find substantial asymmetries, even at x_F around zero. We also observe leading-particle-type asymmetries. These latter effects are qualitatively as expected from valence-quark content of the target and variety of projectiles studied.
LAMBDA production asymmetries versus XL for the positive beams.
LAMBDA production asymmetries versus PT**2 for the positive beams.
LAMBDA production asymmetries versus XL for the negative beams.
Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be
No description provided.
The polarisation of $\tau$'s produced in Z decay is measured using 160 pb$^{-1}$ of data accumulated at LEP by the ALEPH detector between 1990 and 1995. The variation of the polarisation with polar angle yields the two parameters ${\cal A}_e = 0.1504 \pm 0.0068 $ and ${\cal A}_{\tau} = 0.1451 \pm 0.0059$ which are consistent with the hypothesis of $e$-$\tau$ universality. Assuming universality, the value ${\cal A}_{e{-}\tau} = 0.1474 \pm 0.0045$ is obtained from which the effective weak mixing angle $\sin^2 {\theta_{\mathrm{W}}^{\mathrm{eff}}} =0.23147 \pm 0.00057 $ is derived.
No description provided.
This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.
The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).
The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).
The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).
We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.
Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.
The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.
No description provided.
An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.
No description provided.
No description provided.
No description provided.
During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o
Hadronic cross section measured with the 1993 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity).
Hadronic cross section measured with the 1994 data. Additional systematic error of 0.11 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).
Hadronic cross section measured with the 1995 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).