We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|<1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.
Measured differential cross section for B+ production. The first (DSYS) error is the PT dependent systematic error and the second is the full correlated systematic error.
The total integrated B+ meson cross section. The first error is the combined statistical and PT dependent systematic error. The DSYS error is the fully correlated systematic error.
A search was made among ν μ charged current events collected in the NOMAD experiment for the reaction: ν μ +N→μ − +D ★+ + hadrons ↪ D 0 +π + ↪ K − +π + . A high purity D ★+ sample composed of 35 events was extracted. The D ★+ yield in ν μ charged current interactions was measured to be T =(0.79±0.17(stat.)±0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D ★+ is 0.67±0.02(stat.)±0.02(syst.). The distributions of the fragmentation variables z, P T 2 and x F for D ★+ are also presented.
Distribution in Feynman X.
Distribution in transverse momentum.
Distribution in fractional energy Z.
The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Total cross section in the given phase space and assuming ALPHA = 1/137.
Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.
Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.
Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality <Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.
Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.
Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.
Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.
The reaction ${n} {p} \to {p} {p} \pi^{-}$ has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp($^{1}{S}_{0}$) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ${p}{p} \to {p}{p} \pi^{0}$. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section $\sigma({n}{p} \to {\rm p}{p} \pi^{-})$, the isoscalar cross section $\sigma_{01}$ has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections ${d \sigma}/{d M_{pp}}$ as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections ${d \sigma}/{d \Omega_{\pi}^{*}}$ are too large by a factor of $10/2\pi$. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.
Differential cross sections DSIG/DOMEGA for excusive PI- production in N P interactions at incident kinetic energies 315, 345 and 375 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 405, 435 and 465 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 495, 525 and 550 Mev after background subtraction and efficiency correction.
We present a search for new heavy particles, $X$, which decay via $X \to WZ \to e\nu +jj$ in $p{\bar p}$ collisions at $\sqrt{s}$ = 1.8 TeV. No evidence is found for production of $X$ in 110 pb$^{-1}$ of data collected by the Collider Detector at Fermilab. Limits are set at the 95% C.L. on the mass and the production of new heavy charged vector bosons which decay via $W'\to WZ$ in extended gauge models as a function of the width, $\Gamma (W')$, and mixing factor between the $W'$ and the Standard Model $W$ bosons.
CONST(NAME=XI) is the mixing factor between WPRIME and W-boson.
We search for lepton flavour violating events (e mu, e tau and mu tau) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each sqrt(s). A single e mu event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections sigma(e+e- -> e mu, e tau and mu tau) as a function of sqrt(s) at LEP2 energies.
No description provided.
A measurement is presented of the cross section for D* meson production in diffractive deep-inelastic scattering for the first time at HERA. The cross section is given for the process ep -> eXY, where the system X contains at least one D* meson and is separated by a large rapidity gap from a low mass proton remnant system Y. The cross section is presented in the diffractive deep-inelastic region defined by 2< Q^2 < 100 GeV^2, 0.05 < y < 0.7, x_pom < 0.04, M_Y < 1.6 GeV and |t| < 1 GeV^2. The D* mesons are restricted to the range ptD* > 2 GeV and |\eta_D* | < 1.5. The cross section is found to be 246+-54+-56 pb and forms about 6% of the corresponding inclusive D* cross section. The cross section is presented as a function of various kinematic variables, including z_pom^obs which is an estimate of the fraction of the momentum of the diffractive exchange carried by the parton entering the hard-subprocess. The data show a large component of the cross section at low z_pom^obs where the contribution of the Boson-Gluon-Fusion process is expected to dominate. The data are compared with several QCD--based calculations.
The total D*+- production cross section for the given kinematic region. Also given is the ratio to the DIS*+- production cross section in the samekinematic region.
Cross section as a function of X(NAME=POMERON).
Cross section as a function of LOG10(BETA). BETA = X/X(NAME=POMERON).
The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 11.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.
The inclusive cross section for D*+- production. The second DSYS error is related to the changes in efficiency obtained by using different Monte Carlo generators and varying the model parameters.
Single differential visible cross section as a function of W.
Single differential visible cross section as a function of PT.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
Measured cross sections for omega production.
Angular distribution of the OMEGA in the overall centre-of-momentum frame. Statistical error only.