Both the np and the pp analyzing powers were measured simultaneously using the SATURNE II polarized deuteron beam at 0.550, 0.725, 0.900 and 1.15 GeV/nucleon. The results for the pp analyzing power coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power is equal to the one for scattering of free polarized neutrons. The np data cover the angular region 90° ≤ θ CM ≤ 125°. Our results for the np analyzing power clarify a discrepancy between earlier data at 0.5 GeV and allow conclusions about the energy dependence of the minimum of polarization at θ CM ⋍ 100° in the region from 0.5 to 0.9 GeV.
No description provided.
No description provided.
No description provided.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
None
No description provided.
No description provided.
None
No description provided.
Cross sections for inclusive direct photon production in π−p, π+p, and pp collisions at 300 GeV/c are measured at transverse momenta pT up to 7 GeV/c (xT=0.6). For π−p→γX also the rapidity distribution is presented. The cross-section ratio σ(π−p→γX)/σ(π+p→γX) is found to be 1 at pT=4 GeV/c and rises with increasing pT. This observation signals the occurrence of valence-quark–antiquark annihilation. The results are in good agreement with QCD predictions.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.
Cross sections for inclusive π0 production at large transverse momentum pT were measured in π−p, π+p, and pp collisions at 300 GeV/c. The cross-section ratio σ(π−p→π0X)/σ(π+p→π0X) was found to be consistent with unity in the pT region of 1 to 5 GeV/c. The cross-section ratio σ(π+p→π0X)/σ(pp→π0X) however is growing with increasing pT and increasing π0 c.m.-system rapidity in agreement with parton-model expectations, where the partons in the pions have on average higher momenta than in the proton.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.
We have searched for the lepton-flavor-violating decay D0→e±μ∓ in 204 pb−1 of e+e− annihilation data at Ec.m.=29 GeV from the Mark II detector. No candidates were found; we estimate an upper limit on the cross section times branching ratio of σ(e+e−→D0,D¯0; inclusive)B(D0→e±μ∓)<0.35 pb at the 90% confidence level. Simple assumptions yield the rough limit B(D0→e±μ∓)<2.1×10−3. AE.
No description provided.
Nearly 40000 neutrino and antineutrino interactions in BEBC are compared to measure the differences between neon and deuterium in the quark and antiquark distributions and in the nucleon structure functions. The ratio of Ne to D cross sections indicates some decrease betweenx∼0.2 andx∼0.6. They distributions show there is no significant increase in the neon sea, but prefer a small decrease. Taken altogether, thex andy distributions and the measured total cross-sections indicate some change in the shape of the valence distributions. No significant dependence onA is observed for either the shape of the sea or the ratio of longitudinal to transverse cross-sections.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
.
.
.