Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 94 (2016) 014910, 2016.
Inspire Record 1429700 DOI 10.17182/hepdata.73657

We present measurements of the near-side of triggered di-hadron correlations using neutral strange baryons ($\Lambda$, $\bar{\Lambda}$) and mesons ($K^0_S$) at intermediate transverse momentum (3 $<$ $p_T$ $<$ 6 GeV/$c$) to look for possible flavor and baryon/meson dependence. This study is performed in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations due to jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

11 data tables

Corrected 2D $K_S^0$ correlation function for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for 0-20% Cu+Cu. The data have been reflected about $\Delta\eta$ = 0 and $\Delta\phi$ = 0.

Corrected correlation functions $\frac{dN_{J}}{d\Delta\eta}$ in $\mid$$\Delta\eta$$\mid<$ 0.78 for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for (a) $\Lambda$-h and (b) $K_S^0$-h for minimum bias $d$+Au, 0-20% Cu+Cu, and 40-80% Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV after background subtraction. The data have been reflected about $\Delta\eta$ = 0.

$\Lambda$/$K^0_S$ ratio measured in the jet-like correlation in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and \assocrange{2.0}{3.0} along with this ratio obtained from inclusive $p_T$ spectra in \pp collisions.

More…

Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…