Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
We have measured the B hadron energy distribution in Z0 decays using a sample of semi-leptonic B decays recorded in the SLD experiment at SLAC. The energy of each tagged B hadron was reconstructed using information from the lepton and a partially reconstructed charm-decay vertex. We compared the scaled energy distribution with several models of heavy quark fragmentation. The average scaled energy of primary B hadrons was found to be <x_E_B> = 0.716 +- 0.011 (stat.) +0.022 -0.021 (syst.).
Bin center values for X are given.
No description provided.
We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.
The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.
We have measured the polarization parameter in neuton-proton charge-exchange scattering for incident neutron momenta of 2-12 GeVc and 0.01<~|t|<~1.0 (GeVc)2. Results based on 300 000 events show a negative polarization whose magnitude increases monotonically with |t| approaching 60% for |t|∼0.6 and which has little energy dependence.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- K+ K- cross sections. The errors are statistical only.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.
We have measured exclusive ρ0, ω, and φ meson electroproduction at the Cornell Wilson Synchrotron. The final ρ0 data sample included 4637 four-constraint e+p→e+π++π−+p events, with incident energy E=11.5 GeV and electroproduction variables Q2 and W in the region 0.7<Q2<4 GeV2 and 1.9<W<4 GeV. We find that the width of the forward ρ0 diffraction peak increases rapidly as the lifetime of the intermediate hadron states decreases below cΔτ=1 fm and that the peak is wider for longitudinal ρ0 than it is for transverse ρ0. The longitudinal-transverse cross-section ratio Rp=σLσT, obtained assuming s-channel helicity conservation, becomes constant at high Q2. At fixed W the diffractive vector-meson-dominance (VMD) model reproduces the Q2 dependence of our cross section, σ=(σT+εσL), but is is not able to account for the rapid decrease in the cross section with increasing W we observe. We find that σωσρ depends on W but is independent of Q2 for 0.7<Q2<3 GeV2 and 2.2<W<3.7 GeV. However, σω is substantially larger than the diffractive VMD cross section. Our results for σφ are consistent with the Q2 dependence of the diffractive VMD model for 0.8<Q2<4 GeV2 and 2<W<3.7 GeV, but this model again fails to predict the W dependence we observe.
FOUR CHANNEL FIT TO TWO PION PRODUCTION ASSUMING NO INTERFERENCE.
DEPENDENCE OF TOTAL, LONGITUDINAL (L) AND TRANSVERSE (U) DIFFERENTIAL CROSS SECTIONS ON C*DELTA(TAU), THE FORMATION TIME FOR VIRTUAL INTERMEDIATE HADRON STATES. DELTA(TAU) IS 1/DELTA(E) WHERE DELTA(E) IS E(RF=LAB,P=3) - NU = SQRT(NU**2 + Q2 + M(RHO)**2) - NU.
No description provided.