An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.
No description provided.
No description provided.
No description provided.
>From a sample of $2722 \pm 78$ $\Lambda_c~+$ decaying to the $pK~-\pi~+$ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, $143 \pm 20$ $\Sigma_c~0$ and $122 \pm 18$ $\Sigma_c~{++}$ through their decays to $\Lambda_c~+ \pi~{\pm}$. The mass difference $M(\Sigma_c~0) - M(\Lambda_c~+$) is measured to be $(167.38\pm 0.29\pm 0.15)\,\mbox{MeV}$; for $M(\Sigma_c~{++}) - M(\Lambda_c~+)$, we find $(167.76\pm 0.29\pm0.15)\,\mbox{MeV}$. The rate of $\Lambda_c~+$ production from decays of the $\Sigma_c$ triplet is $(22\pm 2\pm 3)\,\mbox{\%}$ of the total $\Lambda_c~+$ production assuming equal rate of production from all three, as measured for $\Sigma_c~0$ and $\Sigma_c~{++}$. We do not observe a statistically significant $\Sigma_c$ baryon-antibaryon production asymmetry. The $x_F$ and $p_t~2$ spectra of $\Lambda_c~+$ from $\Sigma_c$ decays are observed to be similar to those for all $\Lambda_c~+$'s produced.
No description provided.
Analyzing powers for p→n→pp(S01)π− were measured at beam energies 353, 404, and 440 MeV by extracting the quasifree process from p→d→pppπ−. Partial wave amplitude analysis yields a significant contribution from the isospin 1, s-wave channel. This contribution is relatively much larger than that expected from theoretical models which have been successful in describing the isospin 1, s-wave channel behavior of pp→ppπ0 cross sections at threshold.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Using data from Fermilab fixed-target experiment E791, we have measured particle-antiparticle production asymmetries for lambda zero, cascade minus, and omega minus hyperons in pi minus-nucleon interactions at 500 GeV/c. The asymmetries are measured as functions of Feynman-x (x_F) and pt^2 over the ranges of -0.12 GE x_F LE 0.12 and 0 GE pt^2 LE 4 (GeV/c)^2. We find substantial asymmetries, even at x_F = 0. We also observe leading-particle- type asymmetries which qualitatively agree with theoretical predictions.
No description provided.
No description provided.
No description provided.
We report results of the first search for the pentaquark P_{{c bar}s} which is predicted to be a doublet of states: P^0_{{c bar}s}=({c bar} s u u d) and P^-_{{c bar}s}=({c bar} s d d u). A search was made for the decay P^0_{{c bar}s} --> phi,pi,p in data from Fermilab experiment E791, in which 500 GeV/c pi^- beam interacted with nuclear targets. We present upper limits at 90% confidence level for the ratio of cross section times branching fraction of this decay to that for the decay D_s --> phi,pi. The upper limits are 0.031 and 0.063 for M(P^0_{{c bar}s}) = 2.75 and 2.86 GeV/c^2, respectively, assuming a P^0_{{c bar}s} lifetime of 0.4 ps.
The cross sections times branching ratio.
We study the charge correlations between charm mesons produced in 500 GeV pi- - N interactions and the charged pions produced closest to them in phase space. With 110,000 fully reconstructed D mesons from experiment E791 at Fermilab, the correlations are studied as functions of the Dpi - D mass difference and of Feynman x. We observe significant correlations which appear to originate from a combination of sources including fragmentation dynamics, resonant decays, and charge of the beam.
No description provided.
The double differential cross section for pn→pp(1S0)π− at three beam energies has been extracted from the quasifree process pd→pppπ−. A comparison is carried out with single differential cross section measurements for 3He(π−,pn)n, where the pion is thought to be absorbed onto a pp(1S0) “diproton” state. A significant difference is observed in the shape of the angular distribution between the production and absorption data. This difference is ascribed to the effects of the 3He nuclear environment characterizing the absorption process; however, an adequate theoretical explanation is not available.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.