Multi-strange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We present the transverse mass distributions of negative particles, Λ' s , Λ ' s and Ξ − ' s produced in sulphur-tungsten interactions at 200 GeV/ c per nucleon and give the corrected rations Λ /Λ, Ξ − /Λ and Ξ − / Λ . Our ratio Ξ − / Λ appears to be larger than that from pp interactions.
Inverse slopes for different particle production.
Data from this and other WA85 publications.
Data from this and other WA85 publications.
We present measurements of the rapidity and transverse-momentum distributions of the protons emitted in S+W, O+W, andp+W reactions at 200 GeV/A around the target rapidity (y=1). The rapidity density rises linearly with the transverse energy for all three systems, but the slope forp+W is much steeper than for O+W and S+W. The rapidity density forp+W is much higher than predicted by summing single nucleonnucleon collisions without any nuclear effects, indicating substantial rescattering of the produced particles. The predictions of the VENUS 3 model, including rescattering, show reasonable agreement with the data for all three systems. We do not have evidence for a strong collective flow of the outgoing particles.
No description provided.
No description provided.
No description provided.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
None
No description provided.
No description provided.
T - MOMENTUM TRANSFER FROM BEAM PROTON TO LEADING PROTON.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
The PS185 experiment at the CERN Low Energy Antiproton Ring (LEAR) has studied the reaction p ̄ p → \ ̄ gLΛ at several momenta. In this paper results from two runs with high statistics at 1.546 GeV/ c and 1.695 GeV/ c are described. Based on 4063 and 11362 analysed events, respectively, differential and integrated cross sections, polarizations and spin correlations are presented. The singlet fraction, extracted from the spin correlations, is consistent with zero at both momenta, showing that the \ ̄ gLΛ pairs are produced in a pure triplet state. A comparison of the decay asymmetry parameters of Λ and \ ̄ gL reduces the upper limits for the violation of the CP invariance for this system.
No description provided.
THE BESTFIT WITH LMAX=3, HI2=1.204.
THE BESTFIT WITH LMAX=6, HI2=0.547.
None
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
No description provided.
The differential cross section for elastic antiproton—proton scattering at s =1.8 TeV has been measured over the t range 0.034⩽| t |⩽0.65 (GeV/ c ) 2 . A logarithmic slope parameter, B , of 16.3±0.3 (GeV/ c ) −2 is obtained. In contrast to lower energy experiments, no change in slope is observed over this t range.
Numerical values from FERMILAB-FN-562 suppliedto us by R. Rubinstein. Statistical errors only. t values at centre of each bin.
Nuclear slope parameter. Error contains 0.3 GeV**-2 systematic uncertainty folded.
The study of the J ψ transverse momentum distribution in oxygen-uranium reactions at 200 GeV/nucleon shows that 〈 P T 〉 and 〈 P T 2 〉 increase with the transverse energy of the reaction. Muon pairs in the mass continuum do not exhibit the same behaviour. The comparison of the J ψ production rates in central and peripheral collisions shows a significant diminution for low P T central events.
Two parametrization of the D(SIG)/D(PT) are used: first is : PT*exp(-SLOPE*PT**CONST(C=PT)) and second is : PT*exp(-2*MT/CONST(C=MT)).
D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).
D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).
Measurements of the partial charge-changing cross sections for the fragmentation of relativistic iron, lanthanum, holmium, and gold nuclei of several different energies incident on targets of polyethylene, carbon, aluminum, and copper have been reported in an accompanying paper. This paper describes the systematics of the variations of these cross sections with energy, projectile, target, and fragment. We have been able to generate a seven-parameter global fit to 795 measured cross sections for the heavy targets which fits the data with a standard deviation of 7%. We have also generated a similar global fit to 303 measured cross sections for a hydrogen target which fits the data with a standard deviation of 10%. These representations imply that the hypothesis of limiting fragmentation is only accurate to some 20–30 %. Weak factorization can apply, but fits that are marginally better, and more physically plausible, can be obtained without factorization. We have identified, and discussed, a number of caveats to the applicability of these fits outside, and inside, the range of energies and masses covered. Excessively large cross sections for the loss of a single proton from the projectile nuclei suggest electromagnetic dissociation. The cross sections for fragments that experience large charge changes appear to become independent of the size of the charge change. Very heavy projectiles have a significant probability of experiencing fission.
No description provided.
No description provided.
No description provided.