Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1795, 2011.
Inspire Record 929691 DOI 10.17182/hepdata.58224

The jet fragmentation function and transverse profile for jets with 25 GeV < ptJet < 500 GeV and etaJet<1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb^-1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.

30 data tables

Charged particle fragmentation function in the jet-Pt range 25 TO 40 GeV.

Charged particle fragmentation function in the jet-Pt range 40 TO 60 GeV.

Charged particle fragmentation function in the jet-Pt range 60 TO 80 GeV.

More…

Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 84 (2011) 054001, 2011.
Inspire Record 919017 DOI 10.17182/hepdata.57743

Jets are identified and their properties studied in center-of-mass energy sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.

104 data tables

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.0-0.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.5-1.0, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 1.0-1.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

More…

Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1846, 2011.
Inspire Record 930220 DOI 10.17182/hepdata.58001

The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.

10 data tables

Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.0-0.3 from the lifetime-based analysis.

Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.3-0.8 from the lifetime-based analysis.

Inclusive double differential b-jet cross section as a function of PT for the |rapidity| range 0.8-1.2 from the lifetime-based analysis.

More…