Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


Charged-particle angular correlations in XeXe collisions at $\sqrt{s_{_\mathrm{NN}}}=$ 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 100 (2019) 044902, 2019.
Inspire Record 1716441 DOI 10.17182/hepdata.88276

Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of $ \sqrt{s_{_\mathrm{NN}}} =$ 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42 $\mu$b$^{-1}$. The collective motion of the system formed in the collision is parameterized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients $v_{2}$, $v_{3}$, and $v_{4}$ are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to non-collective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.

24 data tables

Elliptic-flow coefficients $v_2$ based on the two-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

Elliptic-flow coefficients $v_2$ based on the scalar-product technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 0.8$.

Elliptic-flow coefficients $v_2$ based on the four-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

More…