Elastic differential cross-section ${\rm d}\sigma/{\rm d}t$ at $\sqrt{s}=$2.76 TeV and implications on the existence of a colourless 3-gluon bound state

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Eur.Phys.J.C 80 (2020) 91, 2020.
Inspire Record 1710347 DOI 10.17182/hepdata.127943

The proton-proton elastic differential cross section ${\rm d}\sigma/{\rm d}t$ has been measured by the TOTEM experiment at $\sqrt{s}=2.76$ TeV energy with $\beta^{*}=11$ m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer ($|t|$) from $0.36$ GeV$^{2}$ to $0.74$ GeV$^{2}$. The differential cross-section can be described with an exponential in the $|t|$-range between $0.36$ GeV$^{2}$ and $0.54$ GeV$^{2}$, followed by a diffractive minimum (dip) at $|t_{\rm dip}| = 0.61 \pm 0.03$ GeV$^{2}$ and a subsequent maximum (bump). The ratio of the ${\rm d}\sigma/{\rm d}t$ at the bump and at the dip is $1.7\pm 0.2$. When compared to the $\rm p\bar{p}$ measurement of the D0 experiment at $\sqrt s = 1.96$ TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering.

0 data tables match query

Elastic differential cross-section measurement at $\sqrt{s}=13$ TeV by TOTEM

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Eur.Phys.J.C 79 (2019) 861, 2019.
Inspire Record 1710340 DOI 10.17182/hepdata.127944

The TOTEM collaboration has measured the elastic proton-proton differential cross section ${\rm d}\sigma/{\rm d}t$ at $\sqrt{s}=13$ TeV LHC energy using dedicated $\beta^{*}=90$ m beam optics. The Roman Pot detectors were inserted to 10$\sigma$ distance from the LHC beam, which allowed the measurement of the range $[0.04$ GeV$^{2};4 $GeV$^{2}] $ in four-momentum transfer squared $|t|$. The efficient data acquisition allowed to collect about 10$^{9}$ elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-$|t|$ tail. The average nuclear slope has been found to be $B=(20.40 \pm 0.002^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{-2}$ in the $|t|$-range $0.04~$GeV$^{2}$ to $0.2~$GeV$^{2}$. The dip position is $|t_{\rm dip}|=(0.47 \pm 0.004^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{2}$. The differential cross section ratio at the bump vs. at the dip $R=1.77\pm0.01^{\rm stat}$ has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.

0 data tables match query

Fluctuations in Large Angle $\pi^\pm p$ Elastic Scattering

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 429, 1978.
Inspire Record 6210 DOI 10.17182/hepdata.76245

Large-angle π±p elastic-scattering cross sections, measured between 2 and 9 GeV/c in fine intervals of incident momentum and scattering angle, are used to search for cross-section fluctuations occurring for small changes in the center-of-mass energy as suggested by Ericson and Mayer-Kuckuck and by Frautschi. Significant fluctuations are observed.

144 data tables match query

No description provided.

No description provided.

No description provided.

More…

Real Part of the K+- p Forward Scattering Amplitude at 4.2-GeV/c, 7-GeV/c and 10-GeV/c

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 107 (1976) 189-210, 1976.
Inspire Record 108434 DOI 10.17182/hepdata.35862

The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Analysis of Two Prong Events in anti-Proton-Proton Interactions at 5.7-GeV/c

Braun, Henri ; Gerber, J.-P. ; Maurer, G. ; et al.
Nucl.Phys.B 95 (1975) 481-502, 1975.
Inspire Record 2106 DOI 10.17182/hepdata.31929

A study of elastic scattering, one-pion production and annihilation reactions in p p interactions at 5.7 GeV/ c was carried out, from the two-prong events, obtained in the hydrogen bubble chamber exposed at CERN.

2 data tables match query

NUMBER OF EVENTS FOR -T<0.03 GEV**2 CALCULATED BY EXTRAPOLATION.

No description provided.


Measurement of the spin dependent structure function g1(x) of the proton.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 329 (1994) 399-406, 1994.
Inspire Record 373036 DOI 10.17182/hepdata.48171

: We have measured the spin-dependent structure function $g_1~p$ of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003<x<0.7$ and $1\,\mbox{GeV}~2<Q~2<60\,\mbox{GeV}~2$. Its first moment, $\int_0~1 g_1~p(x) dx $, is found to be $0.136 \pm 0.011\,(\mbox{stat.})\pm 0.011\,(\mbox{syst.})$ at $Q~2=10\,\mbox{GeV}~2$. This value is smaller than the prediction of the Ellis--Jaffe sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available proton, deuteron and neutron data confirms the Bjorken sum rule to within $10\%$ of the theoretical value.

3 data tables match query

Results on the virtual photon proton asymmetry.

Results on the spin structure function of the proton.

Data for g1 at fixed Q**2 = 10 GeV (assuming no Q**2 dependence of A1).


Measurement of the proton and the deuteron structure functions, F2(p) and F2(d)

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Phys.Lett.B 364 (1995) 107-115, 1995.
Inspire Record 400018 DOI 10.17182/hepdata.48061

The proton and deuteron structure functions F2p and F2d were measured in the kinematic range 0.006<x<0.6 and 0.5<Q~2<75 GeV~2, by inclusive deep inelastic muon scattering at 90, 120, 200 and 280 GeV. The measurements are in good agreement with earlier high precision results. The present and earlier results together have been parametrised to give descriptions of the proton and deuteron structure functions F2 and their uncertainties over the range 0.006<x<0.9.

30 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables match query

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Next-to-leading order QCD analysis of polarized deep inelastic scattering data.

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 405 (1997) 180-190, 1997.
Inspire Record 443186 DOI 10.17182/hepdata.27078

We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.

7 data tables match query

Data from the 2.75 degree spectrometer.

Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.

Data from the 5.5 degree spectrometer.

More…

A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 441 (1995) 3-11, 1995.
Inspire Record 393377 DOI 10.17182/hepdata.32848

We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.

6 data tables match query

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

More…