The cross section for e^+e^- to pi^+pi^-J/psi between 3.8 and 5.5 GeV/c^2 is measured using a 548 fb^{-1} data sample collected on or near the Upsilon(4S) resonance with the Belle detector at KEKB. A peak near 4.25 GeV/c^2, corresponding to the so called Y(4260), is observed. In addition, there is another cluster of events at around 4.05 GeV/c^2. A fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y(4260), especially for the lower mass side of the 4.25 GeV enhancement.
The cross sections for the reactions $e^+e^- \to \phi\eta, \quad \phi\eta', \quad \rho\eta, \quad \rho\eta'$ have been measured using a data sample of 516 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. The corresponding values of the cross sections are: $1.4 \pm 0.4 \pm 0.1$ fb $(\phi\eta)$, $5.3 \pm 1.1 \pm 0.4$ fb $(\phi\eta')$, $3.1 \pm 0.5 \pm 0.1$ fb $(\rho\eta)$ and $3.3 \pm 0.6 \pm 0.2$ fb $(\rho\eta')$. The energy dependence of the cross sections is presented using Belle measurements together with those of CLEO and BaBar.
We report on a high statistics measurement of the total and differential cross sections of the process gamma gamma -> pi^+ pi^- in the pi^+ pi^- invariant mass range 0.8 GeV/c^2 < W < 1.5 GeV/c^2 with 85.9 fb^{-1} of data collected at sqrt{s}=10.58 GeV and 10.52 GeV with the Belle detector. A clear signal of the f_0(980) resonance is observed in addition to the f_2(1270) resonance. An improved 90% confidence level upper limit Br.(eta'(958) -> pi^+ pi^-) < 2.9 x 10^{-3} is obtained for P- and CP-violating decay of the eta'(958) meson using the most conservative assumption about the interference with the background.
A high precision study of the process gamma gamma -> p p-bar has been performed using a data sample of 89/fb collected with the Belle detector at the KEKB e+e- collider. The cross section of p p-bar production has been measured at two-photon center-of-mass (c.m.) energies between 2.025 and 4.0 GeV and in the c.m. angular range of |cos(theta^*)|<0.6. Production of gamma gamma -> eta_c -> p p-bar is observed and the product of the two-photon width of the eta_c and its branching ratio to p p-bar is determined.
We report the first observation of e+e- -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi-, and first evidence for e+e- -> Upsilon(3S)pi+pi-, Upsilon(1S)K+K-, near the peak of the Upsilon(5S) resonance at sqrt{s}~10.87 GeV. The results are based on a data sample of 21.7 fb^-1 collected with the Belle detector at the KEKB e+e- collider. The observed cross-sections are sigma(Upsilon(1S)pi+pi-) = 1.61+-0.10(stat)+-0.12(sys) pb and sigma(Upsilon(2S)pi+pi-) = 2.35+-0.19(stat)+-0.32(sys) pb. Attributing these signals to the Upsilon(5S) resonance, the partial widths Gamma(Upsilon(5S)->Upsilon(1S)pi+pi-) = 0.59+-0.04(stat)+-0.09(sys) MeV and Gamma(Upsilon(5S)->Upsilon(2S)pi+pi-) = 0.85+-0.07(stat)+-0.16(sys) MeV are inferred. These are much larger than any partial widths for previously observed Upsilon(nS) -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi- decays.
K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\sqrt s= 3.773$ GeV and of 6.5 pb$^{-1}$ taken at $\sqrt s= 3.650$ GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for the exclusive light hadron final states of $K_S^0K^-\pi^+$, $K_S^0K^-\pi^+\pi^0$, $K_S^0K^-\pi^+\pi^+\pi^-$, $K_S^0K^-\pi^+\pi^+\pi^-\pi^0$, $K_S^0K^-\pi^+\pi^+\pi^+\pi^-\pi^-$ and $K_S^0K^-\pi^+\pi^0\pi^0$ produced in $e^+ e^-$ annihilation at the two energy points. We set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay to these final states at 90% C.L..
By analyzing the data sets of 17.3, 6.5 and 1.0 pb$^{-1}$ taken, respectively, at $\sqrt s= 3.773$, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for $e^+e^-\to \pi^+\pi^-\pi^0\pi^0$, $K^+K^-\pi^0\pi^0$, $2(\pi^+\pi^-\pi^0)$, $K^+K^-\pi^+\pi^-\pi^0\pi^0$ and $3(\pi^+\pi^-)\pi^0\pi^0$ at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay into these final states at 90% C.L..
Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.
The cross sections for $e^+ e^- \to \phi\pi^+\pi^-$ and $e^+ e^- \to \phi \fzero$ are measured from threshold to $\sqrt{s}=3.0$ $\hbox{GeV}$ using initial state radiation. The analysis is based on a data sample of 673 fb$^{-1}$ collected on and below the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. First measurements are reported for the resonance parameters of the $\phi(1680)$ in the $\phi\pi^+\pi^-$ mode: $m=(1689\pm 7\pm 10)$ MeV/$c^2$ and $\Gamma=(211\pm 14\pm 19)$ MeV/$c^2$. A structure at $\sqrt{s}=2.1 \hbox{GeV}/c^2$, corresponding to the so called Y(2175), is observed/ its mass and width are determined to be $2079\pm13^{+79}_{-28}$ MeV/$c^2$ and $192\pm23^{+25}_{-61} \hbox{MeV}/c^2$, respectively.