Showing 1 of 1 results
A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2100-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1800-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2300-1200. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1900-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2800-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2300-1000. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2100-1600. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2000-1800. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
Results of the background-only fit extrapolated to SR_Gtt_0L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2100_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1800_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2300_1200 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1900_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2800_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2300_1000 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2100_1600 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2000_1800 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Acceptance for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Cutflow for the SR-Gtt-0L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-B for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-M for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-C for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-B for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-M for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-C for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2100-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1800-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2300-1200 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1900-1400 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2800-1400 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2300-1000 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2100-1600 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2000-1800 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.