Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.
Observed production rates relative to the total hadronic cross section.
Production rates corrected for fragmentation, initial state radiation and detector effects.
Inclusive charged particle production ine+e− annihilation into hadrons is studied in terms of the particle fractional momentumxp. Thexp distribution for gluon jets is extracted by comparing two data samples measured in the TASSO detector: nearly symmetric three jet events at centre-of-mass energyW∼35 GeV and two jet events atW∼22 GeV, yielding quark and gluon jets of similar energies (∼11.5 GeV). No significant difference is observed between quark and gluon jets. Monte Carlo models based on parton showers describe the trend and energy variation of the data better than a model with second order matrix element in αs.
2 JET data at sqrt(s) = 35 GeV.
3 JET data at sqrt(s) = 22 GeV.
Gluon jet data at sqrt(s) = 11.5 GeV.
We report on total cross section and forward backward charge asymmetry measurements of the reactione+e− → τ+τ− at centre of mass energies of 35.0 GeV and 42.4 GeV using the TASSO detector. Including previous data an analysis in terms of electroweak parameters of the standard model is presented, and lower limits on mass scale parameters of residual contact interactions are given. A combined analysis of electroweak couplings using all our results on leptonic reactionse+e−→l+l− has been performed.
No description provided.
No description provided.
No description provided.
We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.
RATIO of MULT/DISPERSION for the whole event to that for the single hemisphere data.
Complete event multiplicities.
Single hemisphere multiplicities.
The cross sections of a number of target residues formed in the reactions of 3.65 A GeV 12C ions and 3.65 GeV protons with tantalum have been measured. The measurements have been done by direct counting of irradiated targets with a Ge(Li) gamma-ray spectrometer. Charge dispersions and mass-yield distributions were deduced from these data. The results are discussed in terms of the basic concepts of high-energy nuclear physics. They are also compared with intranuclear cascade and abrasion-ablation model calculations.
No description provided.
No description provided.
No description provided.
None
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS. D(N)/D(P) WAS FITTED BY P**2*EXP(-SLOPE*EKIN).
None
No description provided.
No description provided.
No description provided.
The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.
The spin-correlation parameter Ann for free n-p elastic scattering has been measured for the first time for incident-neutron-beam energy En=790 MeV and c.m. angles 48°≤θ*≤149°. The data are compared with the widely differing predictions of several phase-shift analyses, clearly favoring one of them. They also are compared with recently published quasifree Ann data for the more limited c.m. angular region 98°≲θ*≲122°.
No description provided.
Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.
THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR.
THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR. THE EVENT SELECTION:A HEAVY FRAGMENT(Z>=6) IS REGISTRED IN THE PLASTIC WALL OF THE DIOGENE.