The experimental results for the (π+,π−) reaction on nuclei obtained in recent years reveal clear systematic features of this reaction. New data on 7Li, 12C, 16O, and 56Fe supplementing the existing data base are presented. The data on 12C are partly at variance with previous results. The dependence of the cross sections on incident energy, scattering angle, and on the target mass is discussed for transitions leading to the ground state of the final nucleus or to the double isobaric analog state.
GST means nonanalog ground state.
GST means nonanalog ground state.
GST means nonanalog ground state.
Reaction mechanisms and multifragmentation processes have been studied for 64Zn+58Ni collisions at intermediate energies with the help of antisymmetrized molecular dynamics (AMD-V) model calculations. Experimental energy spectra, angular distributions, charge distributions, and isotope distributions, classified by their associated charged particle multiplicities, are compared with the results of the AMD-V calculations. In general the experimental results are reasonably well reproduced by the calculations. The multifragmentation observed experimentally at all incident energies is also reproduced by the AMD-V calculations. A detailed study of AMD-V events reveals that, in nucleon transport, the reaction shows some transparency, whereas in energy transport the reaction is much less transparent at all incident energies studied here. The transparency in the nucleon transport indicates that, even for central collisions, about 75% of the projectile nucleons appear in the forward direction. In energy transport about 80% of the initial kinetic energy of the projectile in the center- of-mass frame is dissipated. The detailed study of AMD-V events also elucidates the dynamics of the multifragmentation process. The study suggests that, at 35A MeV, the semitransparency and thermal expansion are the dominant mechanisms for the multifragmentation process, whereas at 49A MeV and higher incident energies a nuclear compression occurs at an early stage of the reaction and plays an important role in the multifragmentation process in addition to that of the thermal expansion and the semitransparency.
No description provided.
Average summed transverse momentum.
We report the branching ratios of the χc2(13P2) and χc0(13P0) charmonium resonances to two photons using event samples collected by Fermilab experiment E835 in the reactions p¯p→χc2(13P2)[χc0(13P0)]. Our result for the χc2 is B(χc2→γγ)=(1.35±0.25±0.12)×10−4. We set a 95% upper limit for the χc0 branching ratio B(χc0→γγ) at 2.09×10−4.
No description provided.
Total reaction cross sections σR of (30–60)AMeV 4,6,8He and 6,7,8,9,11Li on Pb, and 2n-removal cross sections σ−2n of 6,8He and 11Li on Pb, were measured by injecting magnetically separated, focused, monoenergetic, secondary beams of those projectiles into a telescope containing Pb targets separated by thin Si detectors. All these σR’s (except 4He), and σ−2n for 6He and 11Li, are underpredicted by microscopic model calculations which include only nuclear forces. Better agreement is achieved by including electromagnetic dissociation in the model, for those projectiles for which either the electric dipole response functions or the dominant photodissociation cross sections were known. The cross sections σ−4n for 8He, σ−xn for 7,8,9Li, and (σ−3n+σ−4n) for 11Li were found to be ⩽0.7 b. All σR’s were measured to better than 5% accuracy, showing that the method is usable for other target elements sandwiched into a Si telescope.
No description provided.
No description provided.
No description provided.
Attenuation measurements of reaction and total cross sections have been made for π− beams at 410, 464, and 492 MeV on targets of CD2, 6Li, C, Al, S, Ca, Cu, Zr, Sn, and Pb. These results are assisted by and compared to predictions from a recent eikonal optical model. Calculations with this model, which does not include pion absorption, agree with recent elastic scattering data, but are significantly below our measured reaction and total cross sections.
No description provided.
No description provided.
No description provided.
Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.
Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.
Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.
Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.
Measurements of the total reaction cross section for 12−16C, 14−17N, and 16−18O on carbon target at intermediate energies were performed on the Radioactive Ion Beam Line of the Heavy Ion Research Facility in Lanzhou. A larger enhancement of σR for 15C was observed than for its neighbors. Evidence for possible anomalous nuclear structure in 15C was revealed in the analysis of the total reaction cross section in terms of the difference factor d.
No description provided.
Yields and phase space distributions of φ -mesons emitted from p+p (minimum bias trigger), p+Pb (at various centralities) and central Pb+Pb collisions are reported ( E beam =158 A GeV). The decay φ →K + K − was used for identification. The φ / π ratio is found to increase by a factor of 3.0±0.7 from inelastic p+p to central Pb+Pb. Significant enhancement in this ratio is also observed in subclasses of p+p events (characterized by high charged-particle multiplicity) as well as in the forward hemisphere of central p+Pb collisions. In Pb+Pb no shift or significant broadening of the φ -peak is seen.
Transverse mass distribution for PHI mesons produced in PB PB collisions averaged over the rapidity region 3.0 to 3.8.
Transverse mass distribution for PHI mesons produced in P P collisions averaged over the rapidity region 2.9 to 4.5.
Rapidity distributions for PHI mesons produced in PB PB collisions.
Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.
No description provided.
No description provided.
No description provided.
A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran
Relative uncertainties on the carbon polarimeter analysing power (AC).
Relative uncertainty in the beam polarisation (PB).
Measurements of DNN with statistical errors only.