A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
Phi meson production is studied by the NA49 collaboration in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV beam energy. The data are compared to measurements at lower and higher energies and to microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.
PHI transverse momentum spectra at incident energy 20 GeV/nucleon integrated over the rapidity range 0 to 1.8.
PHI transverse momentum spectra at incident energy 30 GeV/nucleon integrated over the rapidity range 0 to 1.8.
PHI transverse momentum spectra at incident energy 40 GeV/nucleon integrated over the rapidity range 0 to 1.5.
Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.
Transverse mass spectra for pion production in the central rapidity region for collisions at 20 GeV per nucleon.
Transverse mass spectra for pion production in the central rapidity region for collisions at 30 GeV per nucleon.
Transverse mass spectra for kaon production in the central rapidity region for collisions at 20 GeV per nucleon.
A measurement of the inclusive bottom jet cross section is presented for events containing a $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the Collider Detector at Fermilab. $Z$ bosons are identified in their electron and muon decay modes, and $b$ jets with $E_T>20$ GeV and $|\eta|<1.5$ are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 ${\rm pb}^{-1}$. A cross section times branching ratio of $\sigma (Z+b {\rm jets}) \times {\cal B}(Z \to \ell^+ \ell^-)= 0.93 \pm 0.36$ pb is found, where ${\cal B}(Z\to \ell^+ \ell^-)$ is the branching ratio of the $Z$ boson or $\gamma^*$ into a single flavor dilepton pair ($e$ or $\mu$) in the mass range between 66 and 116 GeV$/c^2$. The ratio of $b$ jets to the total number of jets of any flavor in the $Z$ sample, within the same kinematic range as the $b$ jets, is $2.36 \pm 0.92%$. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with NLO QCD agree, within experimental and theoretical uncertainties, with these measurements.
B-jet cross section for the di-letpon mass from 66 to 116 GeV.
Ratio of the b-jet cross section to the inclusive Z0 cross section.
Ratio of the b-jet cross section to the generic jet cross section.
New results on the production of charged pions in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. Pions are identified by energy loss measurement in a large TPC tracking system which covers a major fraction of the production phase space. Inclusive invariant cross sections are given on a grid of nearly 300 bins per charge over intervals from 0 to 2 GeV/c in transverse momentum and from 0 to 0.85 in Feynman x. The results are compared to existing data in overlapping energy ranges.
Double differential cross sections for PI+ and PI- in P P interactions at 158 GeV.
Double differential cross sections for PI+ and PI- in P P interactions at 158 GeV.
Double differential cross sections for PI+ and PI- in P P interactions at 158 GeV.
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.
Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $
Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.
Inclusive electrons yield versus transverse momentum in P+P collisions.
D0 yield versus transverse momentum in D+AU collisions.
We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=-0.1-0.0$ for $0-5$% central
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.0-0.1$ for $0-5$% central
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.4-0.6$ for $0-5$% central